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On a Division Algebra Classification of Constrained Geniedl Supersymmetries  Francesco Toppan

1. Introduction

In this talk we present a work in progress, based on several papéhe @author and his
coworkers, concerning the division algebra classification of the géped supersymmetries and
of their consistent constraints.

This is an extremely important issue. We recall in fact that in the seventiestiSeseheme
[1] was a cornerstone providing the supersymmetric extension of the Ceibtaadula no-go the-
orem. However, in the eighties [2] and especially in the nineties, the gereetalimce-time super-
symmetries admitting bosonic tensorial central charges and going beyohi $hecheme found
recognition [3, 4] in association with the dynamics of extended objects likeebrésee [5, 6]).
The eleven-dimensionM-algebra underlying th®l-theory as a possible “Theory Of Everything"
(TOE), admitting 32-real component spinors and maximal numbes28) of saturated bosonic
generators [3, 4] falls into this class of generalized supersymmetriesisttis reason why a lot
of attention has been recently devoted to the problem of classifying dizeeraupersymmetries,
see e.g. [7] and [8]. A step towards this classification was provided irB&ed on the available
classification of Clifford algebras and spinors in terms of division algept@, 11, 12], it was
there shown that, in the complex and quaternionic cases, a division-algaimpatible constraint,
leading to the two big classes of hermitian and holomorphic generalized gapaedries, could
be consistently imposed. In this talk we review the main ingredients entering thenmettbal
classification of generalized supersymmetries and present new regjltn[the classification of
the constrained generalized supersymmetries.

The present paper is so conceived. In order to make it self-consistefirst the division-
algebra classification of Clifford algebras and fundamental spinorsceldled. The notion of
“maximal Clifford algebras”, essential for later developments, is introdutteis explained how
to recover all real, complex and quaternionic realizations in any giveresiirae from the set of
fundamental maximal Clifford algebras which can be iteratively construdieithe following, the
notion of generalized supersymmetry is introduced in association with th&rativalgebra prop-
erties. Itis further explained how to implement various division algebrapatible constraints, as
well as their combinations. This amounts to introduce hermitian versus holoroaqtstraints
in the complex and quaternionic cases, as well as reality conditions implemenbeonic gen-
erators. Some concrete examples of these division-algebra compatilsieagoed generalized
supersymmetries are explicitly constructed. A series of tables with the mairdiagte of the
classification are presented. Finally, in the Conclusions, we will briefly methi® possible phys-
ical applications to supersymmetric dynamical systems (and their relation witli-tiweory) of
the above construction.

2. Basic notions: division algebras, Clifford algebras and fundamental spinors

The four division algebras of reaR] and complex C) numbers, quaternion$i] and octo-
nions O) possess respectively 0, 1, 3 and 7 imaginary elenetisfying the relations
e-e = —&; +Cijke, (2.1)

(i, j,k are restricted to take the value 1 in the complex cas2,3lin the quaternionic case and
1,2,...,7 in the octonionic case; furthermore, the sum over repeated indicesasstmald).
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Cijx are the totally antisymmetric division-algebra structure constants. The ociomiwi-
sion algebra is the maximal, since quaternions, complex and real numbeoge cdntained as its
restriction. The totally antisymmetric octonionic structure constants can bessqat as

C123=C147=C165 = Coa6=Co57=Cgs4=Cze7=1 (2.2)

(and vanishing otherwise).
The octonions are the only non-associative, however alternativél(épedivision algebra.
For our later purposes it is of particular importance the notion of divisigakaa principal
conjugation. Any elemerX in the given division algebra can be expressed through the sum

X = Xo+X6&, (2.3)

wherexg andx; are real, the summation over repeated indices is understood and the pottival
i are restrictedupto 1, 3and 7 in theH andO cases respectively. The principal conjugéteof
X is defined to be

X* = Xg—Xig. (2.4)

It allows introducing the division-algebra norm through the prod(cf. The normed-one restric-
tions X*X = 1 select the three parallelizable sphe$ksS® andS’ in association witlC, H andO
respectively.

For what concerns the main properties of Clifford algebras and thetiaelaith the associa-
tive division algebrafk,C, H it is convenient to follow [12] and [15].

The most general irreducibleal matrix representations of the Clifford algebra

FHCY 4 TVPH = 2nW, (2.5)

with n® being a diagonal matrix afp, q) signature (i.ep positive,+1, andq negative,—1, diag-
onal entries) can be classified according to the property of the most geSeraitrix commuting
with all thel's ([STH] = 0 for all p). If the most generabis a multiple of the identity, we get
the normal R) case. Otherwise$ can be the sum of two matrices, the second one multiple of
the square root of-1 (this is the almost complex; case) or the linear combination of 4 matrices
closing the quaternionic algebra (this is tHecase).

For our purposes the division-algebra character of the Clifford sriegm be understood as
follows. In theR-case the matrices realizing the irrep have necessarily real entries, @rdhse
matrices with complex entries can be used, while inkhease the matrices can be realized with
guaternionic entries.

Let us see how this works in a simple example. Let us takeititypeC(0, 3) Clifford algebra.

It can be realized by associating the three Euclidean gamma matrices with teaéntiaginary
quaternionsg. The reason for that lies on the fact that the antisimmetry o€tfse(2.1) structure
constants make the anticommutatees + ejg satisfy the relation

aej+eje = -, (2.6)

IThroughout this paper it will be understood that the positive eigenvalteeassociated with space-like directions,
the negative ones with time-like directions.
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reproducing the three dimensional Euclidean Clifford algebra (2.5) wigathe signs.
It is worth mentioning that in the given signaturps- @ mod8 = 0,4, 6,7, without loss of
generality, thd " matrices can be chosen block-antidiagonal (generalized Weyl-type nsatiiee

of the form
0 o¥
M“=1. 2.7
(0“ 0) @D

Since the generalized Lorentz algebra can be recovered from theralgklthe commutators
Wl — [FK V], in those particular signatures the matri@d! are of block-diagonal type and
it is therefore possible to introduce Weyl-projected spinors, whose nuafilmmmponents is half
of the size of the correspondidgmatrices (this notion of Weyl spinors, which is convenient for
our purposes, has been introduced in [15]).

In [15] the representatives of all Clifford irreps in any given sptgee were systematically
constructed with the help of two recursive algorithms (produ€ing2-dimensional Clifford irreps
from D-dimensional spacetime Clifford irreps), to be applied to the solutions (suth@)) of the
equation (2.5) in terms of imaginary elements of a division algebra (seedd 8¢tail).

Let us briefly comment about the octonionic realization of the (2.5) relatiooutjin matrices
admitting octonionic entries. Since the octonions are non-associative, #ligatn presents
peculiar features. In [16] and [17] it was shown how it could be dased with an octonionic
version of theM algebra and its associated superconformal algebra. Throughouapeswe will
limit ourselves to consider only standard, associative, Clifford algegkassentations.

Fundamental spinors carry a representation of the generalized Lgreuiz with a minimal
number of real components in association with the maximal, compatible, allowistbdralgebra
structure (they can be thought as column vectors with entries in the givisiodialgebra).

It is worth reminding that the division-algebra character of fundameptabss does not nec-
essarily (depending on the given space-time) coincide with the divisiabedgype of the corre-
sponding Clifford irreps (this mismatch lies on the fact that in some giveresipaes the funda-
mental spinors are of Weyl type). In different space-times parametbhggd=s—t mod 8,
fundamental spinors can accommodate dor 2,3 a larger division-algebra structure than the
corresponding Clifford irreps. Conversely, for= 6,7, the Clifford irreps accommodate a larger
division-algebra structure than the corresponding spinors.

3. Maximal Clifford algebrasand their reductions

An extremely useful notion is that of “maximal Clifford algebra” (see [13Maximal Clif-
ford algebras" correspond to the Clifford irreps which can accommadtatenaximal number of
Gamma matrices for the corresponding size of the matrices. Stated othemasw, fiven space-
time, its Clifford irrep can be obtained from its associated maximal Clifford akgetNon-maximal
Clifford algebras are simply recovered after deleting a certain numbeawin@ matrices from a
given maximal one (a procedure which parallels the dimensional reduction)

The knowledge of maximal Clifford algebras (which can be obtained with ttidifalgo-
rithms of [15]) allows us to reconstruct the full set of Clifford irreps ity @iven space-time.

004 /4



On a Division Algebra Classification of Constrained Geniedl Supersymmetries  Francesco Toppan

The maximal Clifford irreps exist ifip—q) =1,5 mod 8. The(p—qg)=1 mod 8
condition corresponds to a real case, while heq=5 mod 8 condition corresponds to a
guaternionic case. The non-maximal Clifford algebras, giverpbyg # 1,5 mod 8, can be
recovered with the procedure illustrated by the following table [13], spiecjfreal, complex and
quaternionic Clifford irreps (denoted &3 and Clifford representations (not necessarily irrep, de-
noted as¥) supporting fundamental spinors:

1 mod 8 (R) 5 mod 8 (H)
0 mod 8| TI,W:(pg % (p-10)
4 mod 8 rWY:(p,g) " (p-1,0)

2 mod 8| T:(pa)—(pa-1) | W:(pag > (p—20) > (p—30)

3 mod 8 F:(p,q)—m;(p—Z,q)
Y (p,gq) = (p—20q)
[: — -1

6 mod 8 LJJ.(|o,q) (p,g—1)

(pvq)i)(p7q_2)ﬂ(p_17q_2)
7 mod 8| W:(pg) % (p-2,9) |r:(p,g)=>(p,q—2)

(3.1)

Some remarks are in order. The real case is shown in the second colinile poth the com-
plex and the quaternionic cases are recovered from the third columnaridwes denote which
gamma matrices (either space-like or time-like) and how many of them have téebeddieom the
corresponding maximal Clifford algebra. The&/* symbol above an arrow specifies whether the
Wey! projection is required in order to produce fundamental spinorgewe “«" symbol above
an arrow denotes a reduction to the complex case.

The (p,q) = (p— 2,q) reduction can only be performed under the condition 3, see [13]
for details. Similarly, thép,q) — (p,q— 2) reduction requireg > 3 (all cases of physical interest
enter the above table, the remaining few exceptional cases can be tiejzdeatsly).

4. On generalized super symmetries

Let us introduce now the notion of generalized supersymmetries as asiextamd general-
ization of the standard supertranslation algebra (in some cases, likeatlyzbra presentation in
a(10,2) spacetime of tht-algebra [9], the bosonic sector admits no translation at all, but still it
is convenient to refer to generalized supersymmetries as “generalipedramslations”). Gener-
alized supertranslations can be used as building blocks to constructesnfmemal algebras (by
simply taking two separate copies of generalized supertranslations anunbesing the closure
of the super-Jacobi identities on all generators, [16]). Once obtaiigetieralized superconformal
algebra, generalized superPoincaré algebras admitting, besides #raliged supertranslations,
also the generalized Lorentz generators, can be recovered thrauglorai-Wigner contraction
procedure. Throughout this paper we will focus just on the buildingksionamely the general-
ized supertranslations.

At first we need to introduce two matrices, denoted\andC[18], related with, respectively,
the hermitian conjugation and transposition acting on Gamma matrisgdays the role of the
time-like I matrix in the Minkowskian space-time and is used to introduce barred spiRoos:
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the other hand, is the charge conjugation matrix. Up to an overall sign, inexigép,q) space-
time, A andC are given by the products of all the time-like and, respectively, all the syroger
antisymmetric) Gamma-matrices (depending on the given space-time thererarst &dvo charge
conjugations matrice€s, Ca, given by the product of all symmetric and all antisymmetric gamma
matrices). For our purposes the importancéand the charge conjugation matfixlies on the
fact that, in aD-dimensional space-tim®(= p+ g) spanned byl x d Gamma matrices, they al-
low to construct a basis fat x d (anti)hermitian and (anti)symmetric matrices, respectively. The

D . . , . .
( k) antisymmetrized products &fGamma matrice&l M-+ are all hermitian or all antiher-

mitian, depending on the value b D. Similarly, the antisymmetrized produ@ﬁ[“l'~+‘k] are all
symmetric or all antisymmetric.

A generalized supersymmetry algebra involvimgomponent real spinoi@; is given by the
anticommutators

{Qa, Qb} = Zan, (4.1)

where the matrixZ appearing in the r.h.s. is the most general n symmetric matrix with total
number of@ components. For any given space-time we can easily compute its associated

decomposition in terms of the antisymmetrized products Gamma matrices, namely

Zab = 5 (Clu)aZ (4.2)

where the valuek entering the sum in the r.h.s. are restricted by the symmetry requirement for the
a < b exchange and are specific for the given spacetime. The coeffidi#nts« are the ranke
abelian tensorial central charges.

In the case of Weyl projected spindﬁa the r.h.s. has to be reconstructed with the help of a
projection operator which selects the upper left block in@2Zblock decomposition. Specifically,

Z1 Zp

7

if Zis a matrix decomposed inx22 blocks asz = > , we can define

P(Z2) = zn. (4.3)
The generalized supersymmetry algebra in the Weyl case can be edptiessugh
{Qa @} = P(Z)a> (4.4)

A complex (quaternionic) generalized supersymmetry algebra is exdresserms of complex
(quaternionic) spinorQ, and their conjugat®*,;. The most general (with a saturated r.h.s.) alge-
brais in this case given by

{Qa, Qo =% , {QaQp}=""%, (4.5)

together with
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where the matrixPap, (P* 4 is its conjugate and does not contain new degrees of freedom) is sym-
metric, while R, is hermitian.

The maximal number of allowed components in the r.h.s. is given, for comptalafuental
spinors withn complex components, byn+ 1) (real) bosonic components entering the symmetric
n x n complex matrixPyy, plusn? (real) bosonic components entering the hermitiann complex
matrix R,

A Weyl projection similar to (4.4) can be applied for complex and quaternigiimoss as well.

5. Real generalized supersymmetries

In this section we present a series of tables, taken from [9] and [1i&githe main properties
of real generalized supersymmetries.

. . . D ,
It is convenient to symbolically denoted dgli” the space o K -component, totally anti-

symmetric rankk tensors of @D-dimensional spacetime, associated to the basis of the symmetric
matricesCr M-

In the case of generalized real supersymmetries, depending on the inaitns D of the
space-time (and independently from its signature, provided that the spidinit the same minimal
number of components), the bosonic sector, together with its number ofiibasmmponents, is
reported in the following table. Since maximal Clifford algebras are odd-dsinaal, without loss
of generality only odd dimensior3 enter the table below

spacetime| bosonic sectors bosonic components
D=1 Mo 1
D=3 M1 3
D=5 Mo 10 (5.1)
D=7 Mo+ M3 14+35=36
D=9 Mo+ M1+ Mg 1+9+126=136
D=11 | M1+M2+Ms 11+ 55+462=528
D=13 | Mx+M3+Mg | 78+ 286+ 1716= 2080

Generalized supersymmetries in even dimensional spacetime can be obtamddd previous
list via a dimensional reduction (by erasing some Gamma matrices, as explabection3). We
obtain that the dimensional reductibn— D — 1 corresponding to the signature passgoe|) —
(p,q—1) (hereD = p+q) is expressed through

spacetime| bosonic sectors bosonic components

D=3 M1 — M1+ Mg 3=2+1

D=5 Mz — M2+ My 10=6+4

D=7 Mo + Mz — Mg+ M3+ M, 36=1+20+15

D=9 Mo+ M1 +Ms — 2 x Mg+ M1 +Mga + Mgz 136=2+8+70+56

D=11 M1 +Mso+Ms — Mg+M2x M1 +My+Ms+Ms | 528= 1+ 20+ 454210+ 252
D=13 My + M3+ Mg — M1 +2 x My + M3z + Ms + Mg 2080= 12+ 2 x 66+ 220+ 792+ 924

(5.2)
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The overlined quantitie®y are referred to the totally antisymmetiketensors in theD — 1-
dimensional spacetime.

Itis also convenient to illustrate the dimensional reduction leading frorfgleg — (p—1,q)
spacetime. The difference w.r.t. the previous case lies on the fact thahe¢w— 1,q) spacetime
is of Weyl type (confront the discussion in Secti@n Only the subclass of totally antisymmetric
bosonick-tensors entering the upper left diagonal block will survive from thgleojection and
enter the generalized supersymmetry. The corresponding symbols &ednraboldfacgMy) in
the table below, corresponding to the even-dimensional Weyl case

spacetime| bosonic sectors bosonic components
D=2 Mo+ M1 1

D=4 M2+ M 3

D=6 Mo+ M3+ M, 10

D=8 Mo+ M1+ Msz+3My 36=1+35

D=10 Mo+M1+Mz+Ms+ M5 136=10+126
D=12 | M{+Mp+Ms+Ms+2+3Mg | 528= 66+ 462

(5.3)

In the above table the factérhas been inserted to remind tmmb is self-dual, so that its total
number of components has to be halved in order to fulfill the selfduallty conditio

6. Constrained complex generalized supersymmetries

Two big classes of subalgebras, respecting the Lorentz-covarizgartege obtained from (4.5)
and (4.6) in both the complex and quaternionic cases, by setting identically tecgero eitherP
or R, namely assuming that either

Pap=P* 4, =0, (6.1)
so that the only bosonic degrees of freedom enter the hermitian nigjrior, conversely, that

Ry =0, (6.2)

so that the only bosonic degrees of freedom effigrand its conjugate matri®* ;.

Following [9] we will refer to the (complex or quaternionic) generalizedesgpmmetries
satisfying the first constraint as “hermitian" generalized supersymmeuvféle the (complex or
guaternionic) generalized supersymmetries satisfying the second datnsffbbe referred to as
“holomorphic" generalized supersymmetries. This distinction finds applicatiphysics. It was
proven in [19] that the analytical continuation of thlealgebra can be carried out to the Euclidean,
the corresponding Euclidean algebra being a complex holomorphic gupagdry.

Further refinements in the classification of division algebra constrainetglized supersym-
metries can be produced by allowing a reality (or imaginary) constraint ondabenic matrice®
and®. Itis convenient to illustrate it by discussing, at first, some specific exagpli@terest, for
later producing general results.
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Let us start describing the generalized supersymmetries associated wihlthspace-time.

Its fundamental spinors are quaternionic and admit 8 real componentaré/e the position to
classify all real and complex saturated generalized supersymmetriesatsddo this spacetime
(the gquaternionic supersymmetries are introduced in the next sectione aleseven separated
cases that we are able to consider, depending on the mixed conditionséinplacity, hermiticity,
reality or imaginary constraint of and®) that can be imposed. The complete class of constrained
generalized supersymmetries can be given as follows:

i) Real generalized supersymmetry with 36 bosonic components. This reaiatjeed su-
persymmetry can also be expressed in the complex spinor formalism, the @tidoosmponents
being recovered from 36 20+ 16, the sum (in the real counting) of the holomorphic and hermitian
sectors of the bosonic r.h.s.,

i) A constrained complex supersymmetry obtained by imposing a reality conditiaR on
alone. The total number of bosonic components in this case is 30,

iii) The constraint arising by impoing either a reality condition®aor, altenatively, an imag-
inary condition on® . The total number of bosonic components is 26,

iv) The holomorphically constrained complex generalized supersymmetry witto@énic
components in the real counting (alternatively described by a reality comditidooth? and R,

v) The hermitian complex generalized supersymmetry with 16 bosonic comporeaitsqunt-
ing) (alternatively described by a reality condition 8rand an imaginary condition oR),

vi) The holomorphically (or hermitian) constrained complex generalized sgperstry with
reality condition on the bosonic r.h.s., Ieading}zt& 20= 10 bosonic components and, finally,

vii) the hermitian supersymmetry with an imaginary constraint on the bosonic deetding
to 6 bosonic components.

The generalized supersymmetries fdr1) allow us to immediately construct the general-
ized supersymmetries in the standard MinkowsKiari) space-time, which can be obtained as a
Weyl-type dimensional reduction froi, 1), see table (3.1). The corresponding generalized su-
persymmetries in this case admit a total number of bosonic generators, edwgag, due to the
Wey! condition based on 4-component spinors, is given by the following lis

i) 10 in the real case (18 6+ 4, in the complex presentation),

i) 9in this real® case,

iii) 7 in this real? case,

iv) 6 in this case, corresponding to the complex hermitian supersymmetry,

V) 4 in this case, corresponding to the complex holomorphic supersymmetry,

vi) 3 for a hermitian or holomorphic supersymmetry supplemented by a reality canditio

vii) 1 for a holomorphic supersymmetry with imaginaPy

The above classes of supersymmetries are present in all cases wliemtioaic generators
are realized through complex spinors.

Both the(4,1) and the(3, 1) spacetimes are not maximal Clifford algebras. The maximal Clif-
ford algebras associated to them are recovered from the (3.1) taldeabbive list of generalized
supersymmetries finds immediate application in the construction of all possibi¢raioed dy-
namical systems arising from dimensional reduction of one given systuiated to the maximal
Clifford spacetime (examples of such systems are the particle models admittiogdensntral
charges, briefly discussed in the Conclusion). This explains the impertdriaoth the (3.1) table
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(for the derivation of maximal Clifford algebras) and of the above caitds in the classification
of generalized supersymmetries.

The above results can be extended to any kind of generalized supersygsmaemittingn-

component complex spinors (i.en gistinct components in the real counting). In the following
table the associated generalized supersymmetries are listed, as well asl themdt@ar of bosonic
(real-counting) degrees of freedom. We have

i Real supersymmetry 2n° +n bosonic components

i |reality on R 3(n?+n) bosonic components
ii | reality on 2 %(3n2 +n) bosonic components
iv | complex holomorphic supersymmetry n’4+n bosonic components

v | complex hermitian n’ bosonic components

vi | complex holomorphic with bosonic reality constraint %(n2 +n) bosonic components
vii | complex holomorphic with bosonic imaginary constra nfi (n>—n) bosonic components

The constrained generalized supersymmetries labeléid, by, v andvi admit an equivalent,

dual presentation. We discussed this feature in the concrete example Mfrtk@vskian (4,1)
generalized supersymmetries, but this is a general property, valid irpacg-¢ime signature. The
dual relations are given by

Preal — R imaginary

)
iv) ® =0+ P R bothreal
V) P =0+« Preal, R imaginary
vi) Preal,R =0« R real,?=0. (6.4)

7. Generalized super symmetries of the quater nionic spacetimes

For what concerns the complex and quaternionic cases several tables produced present-

ing the complete list of the associated constrained supersymmetries. Foff Iggice we limit
ourselves to reproduce here some selected examples concerning eénaliged supersymmetries
supported by quaternionic spacetimes. This provides a reader with aatideathe main features
of the classification.

The first case we present corresponds to the hermitian quaternior@csgapnetry, whose

(6.3)

fermionic generators are quaternionic spinors (the correspondingtiépas supporting such spinors

and

their associated supersymmetries are given in ([15])). In this partiase the corresponding
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table is given by

spacetime|  bosonic sectors bosonic components
D=3 Mo 1
D=4 Mo 1
D=5 Mo+ Mq 1+5=6
D=6 Mj 6
D=7 M1+ M> 74+21=28
D=8 My 28
D=9 M2+ M3 36+84=120
D=10 M3 120
D=11 Mo + M3+ Mg 1+ 165+ 330=496
D=12 Mo+ Mg 1+495= 496
D=13 | Mp+M1+Mg+Ms | 1413+ 715+1287= 2016

(7.1)

As an example of holomorphic supersymmetry we produce a table corgiagdn the complex
holomorphic supersymmetry for quaternionic spacetime, i.e. carrying argioatie structure,
however expressing spinors only through their complex structure. Thigsrtpat the reality con-
dition on the bosonic sector is automatically implemented. Some similarities should drvexbs
between the table (5.1) and the table below. They correspond howeviffetertt cases, real ver-
sus complex holomorphic supersymmetries, associated to spacetimes wittndifignatures and
different number of spinorial components (in the complex holomorphic tteeseumber of spinor
components are double than in the real caseDfdimensional spacetimes). Their similarities on
the other hand have a very deep physical meaning. They imply, e.g., tlwirttpex holomorphic
supersymmetry can be used to perform the analytic continuation of reaissupmetries to differ-
ent signatures (the Euclideanized version oflth@lgebra, see [19], corresponds to the analytical
continuation of the red!l algebra). We have now

spacetime| bosonic sectors bosonic components
D=3 M1 3
D=4 Mo 3
D=5 M 10
D=6 M3 10
D=7 Mo+ M3 1+35=36
D=8 Mo+ My 1+35=36
D=9 M0+M1—|—|V|4 1+9+126=136
D=10 M1 + Ms 10+ 126= 136
D=11 | M1+M2+Ms 11+ 554 462= 528
D=12 M + Me 66+ 462= 528
D=13 Mo+ M3+ Mg | 78+ 286+ 1716= 2080

(7.2)

The classification of the (full) quaternionic holomorphic supersymmetry, wpiesents pe-
culiar features, has been given and discussed in [9]. The resullecummarized as follows
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- D=0,6,7 mod 8
M D=1 d 8
0 mo (7.3)
M1 D=45 mod 8
Mo+M; | D=23 mod 8

The above results can be interpreted as follows. Quaternionic holomagbérsymmetries
only arise inD-dimensional quaternionic space-times, whBre- 2,3,4,5 mod 8. No such
supersymmetry exists iD = 0,6,7 mod 8 D-dimensional spacetimes.

InD=1 mod 8 dimensions it only involves a single bosonic charge and falls into the
class of quaternionic supersymmetric quantum mechanics, rather thasysupeetric relativistic
theories. Finally, this supersymmetry algebra only admits at most a scalaribosatral charge,
found inD-dimensional quaternionic spacetimesibe= 2,3 mod 8.

It must be said that so far no dynamical system supporting such a gopeedry has been
investigated.

8. Conclusions

This paper was devoted to perform a division algebra classification afe¢heralized super-
symmetries. Besides the notion of hermitian (complex and quaternionic) antdmubic (com-
plex and quaternionic) supersymmetries, already presented in [9lhefalistinction of division-
algebra constrained generalized supersymmetries, given by tableh&s3)peen presented. This
set of constrained supersymmetries corresponds to certain classesioihdalgebra constraints
that can be consistently imposed (e.g., a reality condition on the bosonic eéctamnplex holo-
morphic supersymmetries ). The sets of constraints can even be combiadtetpgs discussed in
Sectioné.

Another issue that we have here clarified consists in the explicit constuste table (3.1),
of the non-maximal Clifford algebras and their associated spinors, in tefrieio associated
maximal Clifford algebras. The two main new results here presented allowdsifgland put in a
single framework (via dimensional reduction), showing their web of irdated dualities, a whole
class of generalized supersymmetries.They can be combined to produaghysical side, the
largest “oxydized" dynamical system which can be regarded as theragen of all reduced and
constrained lowest dimensional models.

Some of the mathematical issues here discussed have already been enplaygd per-
forming the analytic continuation of thd algebra [19] (it corresponds to an eleven-dimensional
complex holomorphic supersymmetry and in [9] it was further shown thatétree salgebra also
admits a 12-dimensional Euclidean presentation in terms of Weyl-projectearspiThese two
examples of Euclidean supersymmetries can find application in the functisegtahformulation
of higher-dimensional supersymmetric models.

There is an interesting class of models which nicely fits in the framework leseided and
is currently under intense investigation. It is the class of superparticlelmadkeoduced at first in
[20] and later studied in [21], whose bosonic coordinates corresfmtahsorial central charges.
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It was shown in [22] that a 4-dimensional theory of this kind leads to a to@iverassless higher
spin states, concretely implementing a Fronsdal’'s proposal [23] of inthegiubosonic tensorial
coordinates to describe massless higher spin theories (admitting helicity stdés ghan two).
This is an active area of research, the main motivation being the investigdtiba tensionless
limit of superstring theory, corresponding to a tower of higher helicity masgarticles (see e.g.
[24]).

In a somehow “orthogonal” direction, a class of theories which can bestigaded in the
present framework is the class of supersymmetric extensions of CiaomSupergravities in
higher dimensions, requiring as a basic ingredient a Lie superalgeimigtind a Casimir of ap-
propriate order, see e.g. [25].
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