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1. Introduction

In this talk we present a work in progress, based on several papers of the author and his
coworkers, concerning the division algebra classification of the generalized supersymmetries and
of their consistent constraints.

This is an extremely important issue. We recall in fact that in the seventies the HŁS scheme
[1] was a cornerstone providing the supersymmetric extension of the Coleman-Mandula no-go the-
orem. However, in the eighties [2] and especially in the nineties, the generalized space-time super-
symmetries admitting bosonic tensorial central charges and going beyond theHŁS scheme found
recognition [3, 4] in association with the dynamics of extended objects like branes (see [5, 6]).
The eleven-dimensionalM-algebra underlying theM-theory as a possible “Theory Of Everything"
(TOE), admitting 32-real component spinors and maximal number (= 528) of saturated bosonic
generators [3, 4] falls into this class of generalized supersymmetries. Thisis the reason why a lot
of attention has been recently devoted to the problem of classifying generalized supersymmetries,
see e.g. [7] and [8]. A step towards this classification was provided in [9]. Based on the available
classification of Clifford algebras and spinors in terms of division algebras [10, 11, 12], it was
there shown that, in the complex and quaternionic cases, a division-algebra compatible constraint,
leading to the two big classes of hermitian and holomorphic generalized supersymmetries, could
be consistently imposed. In this talk we review the main ingredients entering the mathematical
classification of generalized supersymmetries and present new results [13] on the classification of
the constrained generalized supersymmetries.

The present paper is so conceived. In order to make it self-consistent, at first the division-
algebra classification of Clifford algebras and fundamental spinors is recalled. The notion of
“maximal Clifford algebras", essential for later developments, is introduced. It is explained how
to recover all real, complex and quaternionic realizations in any given space-time from the set of
fundamental maximal Clifford algebras which can be iteratively constructed. In the following, the
notion of generalized supersymmetry is introduced in association with their division algebra prop-
erties. It is further explained how to implement various division algebra-compatible constraints, as
well as their combinations. This amounts to introduce hermitian versus holomorphic constraints
in the complex and quaternionic cases, as well as reality conditions implemented on bosonic gen-
erators. Some concrete examples of these division-algebra compatible constrained generalized
supersymmetries are explicitly constructed. A series of tables with the main ingredients of the
classification are presented. Finally, in the Conclusions, we will briefly mention the possible phys-
ical applications to supersymmetric dynamical systems (and their relation with theM-theory) of
the above construction.

2. Basic notions: division algebras, Clifford algebras and fundamental spinors

The four division algebras of real (R) and complex (C) numbers, quaternions (H) and octo-
nions (O) possess respectively 0, 1, 3 and 7 imaginary elementsei satisfying the relations

ei ·ej = −δi j +Ci jkek, (2.1)

(i, j,k are restricted to take the value 1 in the complex case, 1,2,3 in the quaternionic case and
1,2, . . . ,7 in the octonionic case; furthermore, the sum over repeated indices is understood).

004 / 2



P
o
S
(
W
C
2
0
0
4
)
0
0
4

On a Division Algebra Classification of Constrained Generalized Supersymmetries Francesco Toppan

Ci jk are the totally antisymmetric division-algebra structure constants. The octonionic divi-
sion algebra is the maximal, since quaternions, complex and real numbers canbe obtained as its
restriction. The totally antisymmetric octonionic structure constants can be expressed as

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (2.2)

(and vanishing otherwise).
The octonions are the only non-associative, however alternative (see[14]), division algebra.
For our later purposes it is of particular importance the notion of division-algebra principal

conjugation. Any elementX in the given division algebra can be expressed through the sum

X = x0 +xiei , (2.3)

wherex0 andxi are real, the summation over repeated indices is understood and the positiveintegral
i are restricted up to 1, 3 and 7 in theC, H andO cases respectively. The principal conjugateX∗ of
X is defined to be

X∗ = x0−xiei . (2.4)

It allows introducing the division-algebra norm through the productX∗X. The normed-one restric-
tionsX∗X = 1 select the three parallelizable spheresS1, S3 andS7 in association withC, H andO
respectively.

For what concerns the main properties of Clifford algebras and their relation with the associa-
tive division algebrasR,C, H it is convenient to follow [12] and [15].

The most general irreduciblereal matrix representations of the Clifford algebra

ΓµΓν +ΓνΓµ = 2ηµν
, (2.5)

with ηµν being a diagonal matrix of(p,q) signature (i.e.p positive,+1, andq negative,−1, diag-
onal entries)1 can be classified according to the property of the most generalSmatrix commuting
with all the Γ’s ([S,Γµ] = 0 for all µ). If the most generalS is a multiple of the identity, we get
the normal (R) case. Otherwise,S can be the sum of two matrices, the second one multiple of
the square root of−1 (this is the almost complex,C case) or the linear combination of 4 matrices
closing the quaternionic algebra (this is theH case).

For our purposes the division-algebra character of the Clifford irreps can be understood as
follows. In theR-case the matrices realizing the irrep have necessarily real entries, in theC-case
matrices with complex entries can be used, while in theH-case the matrices can be realized with
quaternionic entries.

Let us see how this works in a simple example. Let us take theH-typeC(0,3) Clifford algebra.
It can be realized by associating the three Euclidean gamma matrices with the three imaginary
quaternionsei . The reason for that lies on the fact that the antisimmetry of theCi jk (2.1) structure
constants make the anticommutatorseiej +ejei satisfy the relation

eiej +ejei = −δi j , (2.6)

1Throughout this paper it will be understood that the positive eigenvaluesare associated with space-like directions,
the negative ones with time-like directions.
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reproducing the three dimensional Euclidean Clifford algebra (2.5) with negative signs.

It is worth mentioning that in the given signaturesp− q mod8 = 0,4,6,7, without loss of
generality, theΓµ matrices can be chosen block-antidiagonal (generalized Weyl-type matrices), i.e.
of the form

Γµ =

(
0 σµ

σ̃µ 0

)
(2.7)

Since the generalized Lorentz algebra can be recovered from the algebra of the commutators
Σ[µν] = [Γµ

,Γν], in those particular signatures the matricesΣ[µν] are of block-diagonal type and
it is therefore possible to introduce Weyl-projected spinors, whose number of components is half
of the size of the correspondingΓ-matrices (this notion of Weyl spinors, which is convenient for
our purposes, has been introduced in [15]).

In [15] the representatives of all Clifford irreps in any given space-time were systematically
constructed with the help of two recursive algorithms (producingD+2-dimensional Clifford irreps
from D-dimensional spacetime Clifford irreps), to be applied to the solutions (such as (2.6)) of the
equation (2.5) in terms of imaginary elements of a division algebra (see [15] for detail).

Let us briefly comment about the octonionic realization of the (2.5) relation, through matrices
admitting octonionic entries. Since the octonions are non-associative, this realization presents
peculiar features. In [16] and [17] it was shown how it could be associated with an octonionic
version of theM algebra and its associated superconformal algebra. Throughout this paper we will
limit ourselves to consider only standard, associative, Clifford algebrasrepresentations.

Fundamental spinors carry a representation of the generalized Lorentzgroup with a minimal
number of real components in association with the maximal, compatible, allowed division-algebra
structure (they can be thought as column vectors with entries in the given division algebra).

It is worth reminding that the division-algebra character of fundamental spinors does not nec-
essarily (depending on the given space-time) coincide with the division-algebra type of the corre-
sponding Clifford irreps (this mismatch lies on the fact that in some given spacetimes the funda-
mental spinors are of Weyl type). In different space-times parametrizedby ρ = s− t mod 8,
fundamental spinors can accommodate forρ = 2,3 a larger division-algebra structure than the
corresponding Clifford irreps. Conversely, forρ = 6,7, the Clifford irreps accommodate a larger
division-algebra structure than the corresponding spinors.

3. Maximal Clifford algebras and their reductions

An extremely useful notion is that of “maximal Clifford algebra" (see [15]). “Maximal Clif-
ford algebras" correspond to the Clifford irreps which can accommodatethe maximal number of
Gamma matrices for the corresponding size of the matrices. Stated otherwise,for any given space-
time, its Clifford irrep can be obtained from its associated maximal Clifford algebras. Non-maximal
Clifford algebras are simply recovered after deleting a certain number of Gamma matrices from a
given maximal one (a procedure which parallels the dimensional reduction).

The knowledge of maximal Clifford algebras (which can be obtained with the lifting algo-
rithms of [15]) allows us to reconstruct the full set of Clifford irreps in any given space-time.
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The maximal Clifford irreps exist iff(p− q) = 1,5 mod 8. The(p− q) = 1 mod 8
condition corresponds to a real case, while thep− q = 5 mod 8 condition corresponds to a
quaternionic case. The non-maximal Clifford algebras, given byp− q 6= 1,5 mod 8, can be
recovered with the procedure illustrated by the following table [13], specifying real, complex and
quaternionic Clifford irreps (denoted asΓ) and Clifford representations (not necessarily irrep, de-
noted asΨ) supporting fundamental spinors:

1 mod 8 (R) 5 mod 8 (H)

0 mod 8 Γ,Ψ : (p,q)
W
→ (p−1,q)

4 mod 8 Γ,Ψ : (p,q)
W
→ (p−1,q)

2 mod 8 Γ : (p,q) → (p,q−1) Ψ : (p,q)
∗
→ (p−2,q)

W
→ (p−3,q)

3 mod 8
Γ : (p,q)

∗
→ (p−2,q)

Ψ : (p,q)
W
→ (p−2,q)

6 mod 8
Γ : (p,q)→(p,q−1)

Ψ : (p,q)
∗
→ (p,q−2)

W
→ (p−1,q−2)

7 mod 8 Ψ : (p,q)
W
→ (p−2,q) Γ : (p,q)

∗
→ (p,q−2)

(3.1)

Some remarks are in order. The real case is shown in the second column, while both the com-
plex and the quaternionic cases are recovered from the third column. Thearrows denote which
gamma matrices (either space-like or time-like) and how many of them have to be deleted from the
corresponding maximal Clifford algebra. The “W" symbol above an arrow specifies whether the
Weyl projection is required in order to produce fundamental spinors, while the “∗" symbol above
an arrow denotes a reduction to the complex case.

The (p,q)
∗
→ (p−2,q) reduction can only be performed under the conditionp≥ 3, see [13]

for details. Similarly, the(p,q)
∗
→ (p,q−2) reduction requiresq≥ 3 (all cases of physical interest

enter the above table, the remaining few exceptional cases can be treated separately).

4. On generalized supersymmetries

Let us introduce now the notion of generalized supersymmetries as an extension and general-
ization of the standard supertranslation algebra (in some cases, like theF-algebra presentation in
a (10,2) spacetime of theM-algebra [9], the bosonic sector admits no translation at all, but still it
is convenient to refer to generalized supersymmetries as “generalized supertranslations"). Gener-
alized supertranslations can be used as building blocks to construct superconformal algebras (by
simply taking two separate copies of generalized supertranslations and thenimposing the closure
of the super-Jacobi identities on all generators, [16]). Once obtaineda generalized superconformal
algebra, generalized superPoincaré algebras admitting, besides the generalized supertranslations,
also the generalized Lorentz generators, can be recovered through an Inonü-Wigner contraction
procedure. Throughout this paper we will focus just on the building blocks, namely the general-
ized supertranslations.

At first we need to introduce two matrices, denoted asA andC[18], related with, respectively,
the hermitian conjugation and transposition acting on Gamma matrices.A plays the role of the
time-like Γ0 matrix in the Minkowskian space-time and is used to introduce barred spinors.C, on
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the other hand, is the charge conjugation matrix. Up to an overall sign, in a generic (p,q) space-
time,A andC are given by the products of all the time-like and, respectively, all the symmetric (or
antisymmetric) Gamma-matrices (depending on the given space-time there are atmost two charge
conjugations matrices,CS, CA, given by the product of all symmetric and all antisymmetric gamma
matrices). For our purposes the importance ofA and the charge conjugation matrixC lies on the
fact that, in aD-dimensional space-time (D = p+q) spanned byd×d Gamma matrices, they al-
low to construct a basis ford×d (anti)hermitian and (anti)symmetric matrices, respectively. The(

D
k

)
antisymmetrized products ofk Gamma matricesAΓ[µ1...µk] are all hermitian or all antiher-

mitian, depending on the value ofk≤ D. Similarly, the antisymmetrized productsCΓ[µ1...µk] are all
symmetric or all antisymmetric.

A generalized supersymmetry algebra involvingn-component real spinorsQa is given by the
anticommutators

{Qa,Qb} = Zab, (4.1)

where the matrixZ appearing in the r.h.s. is the most generaln×n symmetric matrix with total
number of n(n+1)

2 components. For any given space-time we can easily compute its associated
decomposition in terms of the antisymmetrized products ofk-Gamma matrices, namely

Zab = ∑
k

(CΓ[µ1...µk])abZ
[µ1...µk]

, (4.2)

where the valuesk entering the sum in the r.h.s. are restricted by the symmetry requirement for the
a↔ b exchange and are specific for the given spacetime. The coefficientsZ[µ1...µk] are the rank-k
abelian tensorial central charges.

In the case of Weyl projected spinors̃Qa the r.h.s. has to be reconstructed with the help of a
projection operator which selects the upper left block in a 2×2 block decomposition. Specifically,

if Z is a matrix decomposed in 2×2 blocks asZ =

(
Z1 Z2

Z3 Z4

)
, we can define

P(Z) ≡ Z1. (4.3)

The generalized supersymmetry algebra in the Weyl case can be expressed through
{

Q̃a,Q̃b

}
= P(Z)ab. (4.4)

A complex (quaternionic) generalized supersymmetry algebra is expressed in terms of complex
(quaternionic) spinorsQa and their conjugateQ∗

ȧ. The most general (with a saturated r.h.s.) alge-
bra is in this case given by

{Qa,Qb} = Pab , {Q∗
ȧ,Q

∗
ḃ} = P ∗

ȧḃ, (4.5)

together with

{Qa,Q
∗

ḃ} = Raḃ, (4.6)
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where the matrixPab (P ∗
ȧḃ is its conjugate and does not contain new degrees of freedom) is sym-

metric, whileRaḃ is hermitian.

The maximal number of allowed components in the r.h.s. is given, for complex fundamental
spinors withn complex components, byn(n+1) (real) bosonic components entering the symmetric
n×n complex matrixPab plusn2 (real) bosonic components entering the hermitiann×n complex
matrix Raḃ.

A Weyl projection similar to (4.4) can be applied for complex and quaternionic spinors as well.

5. Real generalized supersymmetries

In this section we present a series of tables, taken from [9] and [13], listing the main properties
of real generalized supersymmetries.

It is convenient to symbolically denoted as “Mk" the space of

(
D
k

)
-component, totally anti-

symmetric rank-k tensors of aD-dimensional spacetime, associated to the basis of the symmetric
matricesCΓ[µ1...µk].

In the case of generalized real supersymmetries, depending on the dimensionality D of the
space-time (and independently from its signature, provided that the spinors admit the same minimal
number of components), the bosonic sector, together with its number of bosonic components, is
reported in the following table. Since maximal Clifford algebras are odd-dimensional, without loss
of generality only odd dimensionsD enter the table below

spacetime bosonic sectors bosonic components

D = 1 M0 1

D = 3 M1 3

D = 5 M2 10

D = 7 M0 +M3 1+35= 36

D = 9 M0 +M1 +M4 1+9+126= 136

D = 11 M1 +M2 +M5 11+55+462= 528

D = 13 M2 +M3 +M6 78+286+1716= 2080

(5.1)

Generalized supersymmetries in even dimensional spacetime can be obtained from the previous
list via a dimensional reduction (by erasing some Gamma matrices, as explained inSection3). We
obtain that the dimensional reductionD → D−1 corresponding to the signature passage(p,q) →
(p,q−1) (hereD = p+q) is expressed through

spacetime bosonic sectors bosonic components
D = 3 M1 → M1 +M0 3 = 2+1
D = 5 M2 → M2 +M1 10= 6+4
D = 7 M0 +M3 → M0 +M3 +M2 36= 1+20+15
D = 9 M0 +M1 +M4 → 2×M0 +M1 +M4 +M3 136= 2+8+70+56
D = 11 M1 +M2 +M5 → M0 +M2×M1 +M2 +M4 +M5 528= 1+20+45+210+252
D = 13 M2 +M3 +M6 → M1 +2×M2 +M3 +M5 +M6 2080= 12+2×66+220+792+924

(5.2)
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The overlined quantitiesMk are referred to the totally antisymmetrick-tensors in theD− 1-
dimensional spacetime.

It is also convenient to illustrate the dimensional reduction leading from the(p,q)→ (p−1,q)

spacetime. The difference w.r.t. the previous case lies on the fact that nowthe(p−1,q) spacetime
is of Weyl type (confront the discussion in Section2). Only the subclass of totally antisymmetric
bosonick-tensors entering the upper left diagonal block will survive from the Weyl projection and
enter the generalized supersymmetry. The corresponding symbols are marked in boldface(Mk) in
the table below, corresponding to the even-dimensional Weyl case

spacetime bosonic sectors bosonic components

D = 2 M0 + 1
2M1 1

D = 4 1
2M2 +M1 3

D = 6 M0 + 1
2M3 +M2 10

D = 8 M0 +M1 +M3 + 1
2M4 36= 1+35

D = 10 M0 +M1 +M2 +M4 + 1
2M5 136= 10+126

D = 12 M1 +M2 +M3 +M5 +2+ 1
2M6 528= 66+462

(5.3)

In the above table the factor1
2 has been inserted to remind thatM D

2
is self-dual, so that its total

number of components has to be halved in order to fulfill the selfduality condition.

6. Constrained complex generalized supersymmetries

Two big classes of subalgebras, respecting the Lorentz-covariance,can be obtained from (4.5)
and (4.6) in both the complex and quaternionic cases, by setting identically equal to zero eitherP
or R , namely assuming that either

Pab ≡ P ∗
ȧḃ ≡ 0, (6.1)

so that the only bosonic degrees of freedom enter the hermitian matrixRaḃ or, conversely, that

Raḃ ≡ 0, (6.2)

so that the only bosonic degrees of freedom enterPab and its conjugate matrixP ∗
ȧḃ.

Following [9] we will refer to the (complex or quaternionic) generalized supersymmetries
satisfying the first constraint as “hermitian" generalized supersymmetries,while the (complex or
quaternionic) generalized supersymmetries satisfying the second constraint will be referred to as
“holomorphic" generalized supersymmetries. This distinction finds applicationin physics. It was
proven in [19] that the analytical continuation of theM-algebra can be carried out to the Euclidean,
the corresponding Euclidean algebra being a complex holomorphic supersymmetry.

Further refinements in the classification of division algebra constrained generalized supersym-
metries can be produced by allowing a reality (or imaginary) constraint on thebosonic matricesP
andR . It is convenient to illustrate it by discussing, at first, some specific examples of interest, for
later producing general results.
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Let us start describing the generalized supersymmetries associated with the(4,1) space-time.
Its fundamental spinors are quaternionic and admit 8 real components. Weare in the position to
classify all real and complex saturated generalized supersymmetries associated to this spacetime
(the quaternionic supersymmetries are introduced in the next section). There are seven separated
cases that we are able to consider, depending on the mixed conditions (holomorphicity, hermiticity,
reality or imaginary constraint onP andR ) that can be imposed. The complete class of constrained
generalized supersymmetries can be given as follows:

i) Real generalized supersymmetry with 36 bosonic components. This real generalized su-
persymmetry can also be expressed in the complex spinor formalism, the 36 bosonic components
being recovered from 36= 20+16, the sum (in the real counting) of the holomorphic and hermitian
sectors of the bosonic r.h.s.,

ii) A constrained complex supersymmetry obtained by imposing a reality condition onR

alone. The total number of bosonic components in this case is 30,
iii) The constraint arising by impoing either a reality condition onP or, altenatively, an imag-

inary condition onR . The total number of bosonic components is 26,
iv) The holomorphically constrained complex generalized supersymmetry with 20 bosonic

components in the real counting (alternatively described by a reality condition on bothP andR ,
v)The hermitian complex generalized supersymmetry with 16 bosonic components (real count-

ing) (alternatively described by a reality condition onP and an imaginary condition onR ),
vi) The holomorphically (or hermitian) constrained complex generalized supersymmetry with

reality condition on the bosonic r.h.s., leading to1
2 ×20= 10 bosonic components and, finally,

vii) the hermitian supersymmetry with an imaginary constraint on the bosonic sector,leading
to 6 bosonic components.

The generalized supersymmetries for(4,1) allow us to immediately construct the general-
ized supersymmetries in the standard Minkowskian(3,1) space-time, which can be obtained as a
Weyl-type dimensional reduction from(4,1), see table (3.1). The corresponding generalized su-
persymmetries in this case admit a total number of bosonic generators, whosecounting, due to the
Weyl condition based on 4-component spinors, is given by the following list

i) 10 in the real case (10= 6+4, in the complex presentation),
ii) 9 in this realR case,
iii) 7 in this realP case,
iv) 6 in this case, corresponding to the complex hermitian supersymmetry,
v) 4 in this case, corresponding to the complex holomorphic supersymmetry,
vi) 3 for a hermitian or holomorphic supersymmetry supplemented by a reality condition,
vii) 1 for a holomorphic supersymmetry with imaginaryP .
The above classes of supersymmetries are present in all cases when thefermionic generators

are realized through complex spinors.
Both the(4,1) and the(3,1) spacetimes are not maximal Clifford algebras. The maximal Clif-

ford algebras associated to them are recovered from the (3.1) table. The above list of generalized
supersymmetries finds immediate application in the construction of all possible constrained dy-
namical systems arising from dimensional reduction of one given system associated to the maximal
Clifford spacetime (examples of such systems are the particle models admitting tensorial central
charges, briefly discussed in the Conclusion). This explains the importance of both the (3.1) table
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(for the derivation of maximal Clifford algebras) and of the above constraints in the classification
of generalized supersymmetries.

The above results can be extended to any kind of generalized supersymmetries admittingn-
component complex spinors (i.e. 2n distinct components in the real counting). In the following
table the associated generalized supersymmetries are listed, as well as the total number of bosonic
(real-counting) degrees of freedom. We have

i Real supersymmetry 2n2 +n bosonic components
ii reality on R 3

2(n2 +n) bosonic components
iii reality on P 1

2(3n2 +n) bosonic components
iv complex holomorphic supersymmetry n2 +n bosonic components
v complex hermitian n2 bosonic components
vi complex holomorphic with bosonic reality constraint 1

2(n2 +n) bosonic components
vii complex holomorphic with bosonic imaginary constraint12(n2−n) bosonic components

(6.3)

The constrained generalized supersymmetries labeled byiii , iv, v andvi admit an equivalent,
dual presentation. We discussed this feature in the concrete example of theMinkowskian(4,1)

generalized supersymmetries, but this is a general property, valid in any space-time signature. The
dual relations are given by

iii ) P real ↔ R imaginary,

iv) R = 0↔ P ,R bothreal,

v) P = 0↔ P real,R imaginary,

vi) P real,R = 0↔ R real,P = 0. (6.4)

7. Generalized supersymmetries of the quaternionic spacetimes

For what concerns the complex and quaternionic cases several tables can be produced present-
ing the complete list of the associated constrained supersymmetries. For lack of space we limit
ourselves to reproduce here some selected examples concerning the generalized supersymmetries
supported by quaternionic spacetimes. This provides a reader with an ideaabout the main features
of the classification.

The first case we present corresponds to the hermitian quaternionic supersymmetry, whose
fermionic generators are quaternionic spinors (the corresponding spacetimes supporting such spinors
and their associated supersymmetries are given in ([15])). In this particular case the corresponding
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table is given by

spacetime bosonic sectors bosonic components

D = 3 M0 1

D = 4 M0 1

D = 5 M0 +M1 1+5 = 6

D = 6 M1 6

D = 7 M1 +M2 7+21= 28

D = 8 M2 28

D = 9 M2 +M3 36+84= 120

D = 10 M3 120

D = 11 M0 +M3 +M4 1+165+330= 496

D = 12 M0 +M4 1+495= 496

D = 13 M0 +M1 +M4 +M5 1+13+715+1287= 2016

(7.1)

As an example of holomorphic supersymmetry we produce a table corresponding to the complex
holomorphic supersymmetry for quaternionic spacetime, i.e. carrying a quaternionic structure,
however expressing spinors only through their complex structure. This implies that the reality con-
dition on the bosonic sector is automatically implemented. Some similarities should be observed
between the table (5.1) and the table below. They correspond however to different cases, real ver-
sus complex holomorphic supersymmetries, associated to spacetimes with different signatures and
different number of spinorial components (in the complex holomorphic casethe number of spinor
components are double than in the real case, forD-dimensional spacetimes). Their similarities on
the other hand have a very deep physical meaning. They imply, e.g., that thecomplex holomorphic
supersymmetry can be used to perform the analytic continuation of real supersymmetries to differ-
ent signatures (the Euclideanized version of theM-algebra, see [19], corresponds to the analytical
continuation of the realM algebra). We have now

spacetime bosonic sectors bosonic components

D = 3 M1 3

D = 4 M̃2 3

D = 5 M2 10

D = 6 M̃3 10

D = 7 M0 +M3 1+35= 36

D = 8 M0 + M̃4 1+35= 36

D = 9 M0 +M1 +M4 1+9+126= 136

D = 10 M1 + M̃5 10+126= 136

D = 11 M1 +M2 +M5 11+55+462= 528

D = 12 M2 + M̃6 66+462= 528

D = 13 M2 +M3 +M6 78+286+1716= 2080

(7.2)

The classification of the (full) quaternionic holomorphic supersymmetry, which presents pe-
culiar features, has been given and discussed in [9]. The results canbe summarized as follows
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− D = 0,6,7 mod 8

M0 D = 1 mod 8

M1 D = 4,5 mod 8

M0 +M1 D = 2,3 mod 8

(7.3)

The above results can be interpreted as follows. Quaternionic holomorphicsupersymmetries
only arise inD-dimensional quaternionic space-times, whereD = 2,3,4,5 mod 8. No such
supersymmetry exists inD = 0,6,7 mod 8 D-dimensional spacetimes.

In D = 1 mod 8 dimensions it only involves a single bosonic charge and falls into the
class of quaternionic supersymmetric quantum mechanics, rather than supersymmetric relativistic
theories. Finally, this supersymmetry algebra only admits at most a scalar bosonic central charge,
found inD-dimensional quaternionic spacetimes forD = 2,3 mod 8.

It must be said that so far no dynamical system supporting such a supersymmetry has been
investigated.

8. Conclusions

This paper was devoted to perform a division algebra classification of thegeneralized super-
symmetries. Besides the notion of hermitian (complex and quaternionic) and holomorphic (com-
plex and quaternionic) supersymmetries, already presented in [9], a further distinction of division-
algebra constrained generalized supersymmetries, given by table (6.3),has been presented. This
set of constrained supersymmetries corresponds to certain classes of division algebra constraints
that can be consistently imposed (e.g., a reality condition on the bosonic sectorof complex holo-
morphic supersymmetries ). The sets of constraints can even be combined together, as discussed in
Section6.

Another issue that we have here clarified consists in the explicit construction, see table (3.1),
of the non-maximal Clifford algebras and their associated spinors, in terms of their associated
maximal Clifford algebras. The two main new results here presented allow to classify and put in a
single framework (via dimensional reduction), showing their web of inter-related dualities, a whole
class of generalized supersymmetries.They can be combined to produce, on a physical side, the
largest “oxydized" dynamical system which can be regarded as the generator of all reduced and
constrained lowest dimensional models.

Some of the mathematical issues here discussed have already been employedto, e.g., per-
forming the analytic continuation of theM algebra [19] (it corresponds to an eleven-dimensional
complex holomorphic supersymmetry and in [9] it was further shown that the same algebra also
admits a 12-dimensional Euclidean presentation in terms of Weyl-projected spinors). These two
examples of Euclidean supersymmetries can find application in the functional integral formulation
of higher-dimensional supersymmetric models.

There is an interesting class of models which nicely fits in the framework here described and
is currently under intense investigation. It is the class of superparticle models, introduced at first in
[20] and later studied in [21], whose bosonic coordinates correspondto tensorial central charges.
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It was shown in [22] that a 4-dimensional theory of this kind leads to a towerof massless higher
spin states, concretely implementing a Fronsdal’s proposal [23] of introducing bosonic tensorial
coordinates to describe massless higher spin theories (admitting helicity states greater than two).
This is an active area of research, the main motivation being the investigation of the tensionless
limit of superstring theory, corresponding to a tower of higher helicity massless particles (see e.g.
[24]).

In a somehow “orthogonal" direction, a class of theories which can be investigated in the
present framework is the class of supersymmetric extensions of Chern-Simon supergravities in
higher dimensions, requiring as a basic ingredient a Lie superalgebra admitting a Casimir of ap-
propriate order, see e.g. [25].
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