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We expand on the recently reported detections of the gamma-ray resonant absorption along the
line of sight toward gamma-ray bright quasars (QSOs), like 3C279. We propose to use this novel
gamma-ray absorption method to study the Dark Matter distribution in the Milky Way, as well as
in the Local Group.

Properties of the absorber that was detected on the sight lines towards gamma-ray bright QSOs at
zero redshift are discussed. We compare our results with the expected Dark Matter distributions
in the halo of Milky Way, that were simulated in boundaries of different CDM models.
Application of this new method to study evolution of CDM in the QSO host galaxies, and of

baryons distribution in the halo of galaxies in the Local Universe is proposed.
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1. Introduction

One of the pressing problems in the modern cosmology is that the nature of the dark matter
is at present unknown. The properties of dark matter on large scales are compatible with a heavy,
collision-less species which clusters gravitationally, cold dark matter (CDM). But there are incon-
sistencies between simulations and observations of the dark matter halo of galaxies in boundaries
of CDM models. While the outer slope derived from the numerical simulations [9], [10], [12], [18],
and [19] is consistent with current observations, there are problems with fitting the inner slope of
halos. Observations of rotation curves of many dwarf galaxies, indicating almost constant density
cores, suggest that the inner density profiles in these systems are much shallower than found in
simulations [4], [5], and [22].

We propose to use a new method, namely, a recently introduced y-ray probe of the absorbing
columns on the line sights towards bright quasars (QSOs) [14] to solve the discrepancy between
observations and simulations of the halo density profiles. The y-ray absorption can be used to
probe higher column densities than those accessible for the longer wavelengths. Additionally, it is
not sensistive to the absorber ionization or chemical state.

In our method we rely on the photoabsorption processes that happen on the nuclei. Apart
of the well known high-energy photons attenuation processes, like Compton scattering and pair
production, with a rather smooth energy dependence of the cross section at E,>100 keV [13],
there are three more photoabsorption processes to mention [14]. Namely, the photoabsorption
cross-section on nuclei have three resonant-like peaks in the cross section, at energies of ~7 MeV
(“pygmy” dipole resonance (PDR)), 20-30 MeV (giant dipole resonance (GDRY)), and ~325 MeV
(A-resonance) [1]. The best studied of these three processes are GDR, and A-isobar resonance [1].

From the ratio of the typical absorption cross sections in the y-ray and X-ray regimes follows
that y-rays probe the column densities of the order of ~10% cm~2 via the resonant y-absorption,
while in X-ray regime we probe column densities of the order of <102 cm—2.

2. Absorbing columns near Galactic Center

Results used to constrain the shape of the baryonic matter distribution in the region of Galactic
Center (GC) are based on the data acquired by the gamma-ray telescopes COMPTEL and EGRET
on-board of the Compton Gamma-Ray Observatory (CGRO). A detailed description of the instru-
ments and data analysis is given in [21] for COMPTEL, and in [23], and [16] for EGRET.

We analysed COMPTEL data using the maximume-likelihood method (SRCFIX), that evolved
from the work on diffuse emission modeling [24]. The analysis of EGRET data is also based on
the maximum likelihood analysis of the observed region [16].

In this paper we will mostly use results of EGRET, that has best sensitivity near the 300 MeV,
i.e near the energy of the A-resonance absorption for systems with a small redshift. The differential
photon flux from AGN at the Earth can be written as a function of the photon energy and of redshift:
g_,é = (g_g)unabsorbed e 1B

The dependence of T on E and zis quite complex, to simplify it we assume that we are dealing
with two absorbers, one in the QSO host galaxy, and the second absorber in the Milky Way.
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Figure 1. Left: A fit to the 3EG J1744-3011 time-averaged SED, that includes the A resonance photon ab-
sorption (red line) in the matter of Milky Way. Black line shows “Band”-function fit. Right: The comparison
of the DM density profiles derived from the numerical simulations, adapted from [6], with the preliminary
normalized values of the baryonic absorption columns derived from the amplitude of the A resonance photon
absorption troughs in the SEDs of EUIDs listed in the Table 1. Here “can” stands for canonical distribution
[2]; “PS” stands for distribution of [20]; “M&” stands for [17], and “NFW” is from [18].

As a first step of a SED analysis, we fit a smooth function to the spectrum, which we choose
to be the so-called “Band”-function [3], that describes well not only power-law spectra, but also
spectra with a break. In the second fit we use as a fit function the sum of the “Band”-function and a
gaussian. The significance of the fit improvement we evaluate using the probability for the spurious
improvement of the fit from the value of AX*=Xfq~Xfand s gauss O 3 d-0.f. as a test for such an
improvement, similar to [8]. Some of the y-ray bright sources in the GC region, can be used to
probe the baryonic matter distribution in the center of Milky Way. The very first results of such
a “probe” are discussed below. We have used SEDs of 6 EGRET Unidentified sources (EUIDSs)

| object || 1° | d° | 6es deg. | Ad,(pc) || Nux10% [ Ny* [ No. |
3EG J1746-2851 || 00.11 || -0.04 || 0.13 17.366 2478, 6.575° 1
3EG J1744-3011 | -1.15 || -0.52 | 0.32 187.26 | 352 9.57%8 2
3EG J1736-2908 | -1.21 || 156 || 0.62 | 27569 | 4.1+24 | 1.11+065 || 3
3EG J1741-2312 || 04.42 || 3.76 || 057 | 813.02 | 3.8+25 [ 1.02+068 | 5
3EGJ1717-2737 | -2.33 || 595 || 064 | 89592 | 3.1+22 [ 0.84+059 | 6
3EG J1741-2050 || 06.44 || 5.00 | 0.63 1146.1 | 3.9+24 | 1.07+065 | 7

* Value normalized to the mean value of Ny =(3.70+1.19) x10% cm~2 for Ad>275 pc.

Table 1: EUIDs, their projected distance from the GC, and absorbing columns for these projected
distances.

[11] to derive baryonic absorbing columns near GC (Table 1). 3EG J1756-2851 is at a redshift of
~0.85 [14]. By analogy with 3EG J1736-2908 which was identified with the Seyfert | galaxy GRS
1734-292 [7], and [15], we consider 4 other EUIDs also as extragalactic sources. For 5 out of 6
EUIDs the fit and the derived absorbing column was made in the region of A-resonance (Fig. 1,
left). Only for 3EG J1746-2851 we have used results of the fit at the energies of GDR, e.g around
25 MeV. In this case we derived the lowest possible value of the absorbing column. Four columns
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derived for EUIDs at the projected distances of Ad>275 pc were used to calculated weighted mean
value of the absorbing column, that was normalized to the calculated DM density profiles of Fig.
1 (right) at r=1 kpc. Figure 1 (right) shows the Milky Way central core/cusp profiles derived by
the numerical simulations that are (rather crudely) compared with the baryonic absorbing columns
measured at different projected distances from the GC.

The incentive of our paper was to demonstrate the potential of the y-ray absorption method
for this or similar studies. Still, already these results give a hint of a more shallow slope of the
inner cusp than that from the numerical simulations [17], or [18]. It is clear that more sensitive
measurements of EUID SEDs in the GC region are needed to provide definite conclusion on the
preferable baryonic matter profile close to the Galactic Center. Such measurements can be per-
formed by the forthcoming new gamma-ray mission GLAST, that will be launched in 2007, see
http://www-glast.slac.stanford.edu, for the GLAST description.
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