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We study the exponential stabilization of the linearized Navier-Stokes equations around an un-

stable stationary solution, by means of a feedback boundarycontrol, in dimension 2 or 3. The

feedback law is determined by solving a Linear-Quadratic control problem. We do not assume

that the normal component of the control is equal to zero. In that case the state equation, sat-

isfied by the velocity fieldy, is decoupled into an evolution equation satisfied byPy, whereP

is the so-called Helmholtz projection operator, and a quasi-stationary elliptic equation satisfied

by (I −P)y. Using this decomposition we show that the feedback law can be expressed only in

function ofPy. We show that the linear feedback law provides a local exponential stabilization of

the Navier-Stokes equations.
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1. Introduction

Let Ω be a bounded and connected domain inR
2 or R

3 with a boundaryΓ of classC4, ν > 0,
and consider a couple(w,χ) – a velocity field and a pressure – solution to the stationary Navier-
Stokes equations inΩ:

−ν∆w+(w ·∇)w+ ∇χ = f and divw = 0 in Ω, w = u∞
s on Γ.

We assume thatw is regular and is an unstable solution of the instationary Navier-Stokes equations.
We want to determine a Dirichlet boundary controlu, in feedback form, localized in a part of the
boundaryΓ, so that the corresponding controlled system:

∂y
∂ t

−ν∆y+(y ·∇)w+(w ·∇)y+(y ·∇)y+ ∇p= 0,

div y = 0 in Q∞, y = Mu on Σ∞, y(0) = y0 in Ω,
(1.1)

be stable for initial valuesy0 small enough in an appropriate spaceX(Ω). In this setting,Q∞ =

Ω× (0,∞), Σ∞ = Γ× (0,∞), X(Ω) is a subspace ofV0
n(Ω) =

{

y ∈ L2(Ω) | div y = 0 in Ω, y ·n =

0 onΓ
}

, w∈X(Ω), and the operatorM is a restriction operator ensuring that the control is localized

on a part of the boundaryΓ (see [14]). If we set(z,q) = (w + y,χ + p) and if u = 0, we see that
(z,q) is the solution to the Navier-Stokes equations

∂z
∂ t

−ν∆z+(z·∇)z+ ∇q= f, div z = 0 in Q∞,

z = u∞
s on Σ∞, z(0) = w+y0 in Ω.

Thusy0 is a perturbation of the stationary solutionw. Whenw ∈ L ∞(Ω) andy0 ∈ V0
n(Ω)∩L4(Ω)

with |y0|L4(Ω) small enough, the existence of a boundary controlu such that the solution to equation
(1.1) exponentially decreases in the norm of the spaceX(Ω) = V0

n(Ω)∩L4(Ω), follows from a local
exact controllability result stated in [5, Theorem 2]. But the proof in [5] does not give any way to

define such a control in feedback form. In the three-dimensional case, and whenX(Ω) =
{

y ∈

H1(Ω) | div y = 0 in Ω, 〈y · n,1〉H−1/2(Γ),H1/2(Γ) = 0
}

, the existence of a control exponentially
stabilizing (1.1) is proved in [8]. One way to construct robust feedback laws consists in using the
methods of the optimal control theory. This approach has been studied in the case of an internal
control [2, 1, 3], and has been numerically tested with a boundary control in the very specific
geometry of the rectangular driven cavity [10] and when the normal component of the control is
equal to zero. In many engineering applications [13, 11] thenormal component of the control
variable is not equal to zero. This is the situation we consider here.

The Linear-Quadratic theory for the Dirichlet control of the linearized Navier-Stokes equations
has been studied in a very recent work [4], in the case when thenormal component of the boundary
control is zero, and when the control is applied everywhere on the boundary. To the best of our
knowledge the case when the normal component is not equal to zero has not yet been studied in the
literature. Our main objectives are:

- first to develop the Linear-Quadratic theory over an infinite time horizon of the Dirichlet
boundary control of the Oseen equations when the control is localized on a part of the boundary,
and when the normal component of the control is not zero,
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- next to show that the linear feedback law, calculated with the linearized model, and applied
to the nonlinear equation (1.1), provides a local exponential stabilization of the state in some ap-
propriate spaceX(Ω).

In the two dimensional case the feedback control law is obtained by studying the control
problem

(P) inf
{

J(y,u) | (y,u) satisfies(1.2), u ∈ L2(0,∞;V0(Γ))
}

,

where

J(y,u) =
1
2

∫ ∞

0

∫

Ω
|y|2 dxdt+

1
2

∫ ∞

0

∫

Γ
|u|2dxdt,

and
∂y
∂ t

−ν∆y+(w ·∇)y+(y ·∇)w−ωy+ ∇p= 0, in Q∞,

div y = 0 in Q∞, y = Mu on Σ∞, y(0) = y0 in Ω,
(1.2)

whereV0(Γ) =
{

y ∈ L2(Γ) | 〈y · n,1〉H−1/2(Γ),H1/2(Γ) = 0
}

. The coefficientω > 0, which is not
present in (1.1), is added in equation (1.2) in order to guarantee the exponential decay in the norm
H1/2−ε(Ω), 0 < ε < 1/4, of the solution of the nonlinear closed loop system definedbelow. We
show that the control problem(P) can be rewritten in the form of another control problem in
which the state variable isPy – whereP is the so-called Helmholtz projection operator – and noty.
This transformation is essential in our approach. It leads to a Riccati equation which is the natural
one for the new control problem, but which is not the expectedone if we only consider problem
(P). This transformation of(P) into a new control problem is a direct consequence of rewriting
equation (1.2) in the form:

Py′ = APy+ ωPy+BMu, y(0) = y0,

(I −P)y = (I −P)DAγnMu.
(1.3)

The operatorA is the Oseen operator, the control operator is defined byB = (λ0I −A)DA for
someλ0 > 0, andDA is the Dirichlet operator associated withλ0I −A. We refer to [14] for the
transformation of equation (1.2) into (1.3), and for regularity results for equation (1.3). Denoting
by Πω the solution to the Riccati equation of the control problem(P), and settingRA = MD∗

A(I −
P)DAM + I , we show that the closed loop system

∂y
∂ t

−ν∆y+(w ·∇)y+(y ·∇)w+ ∇p= 0, in Q∞,

div y = 0 in Q∞, y = −MR−1
A MB∗ΠωPy on Σ∞, y(0) = y0 in Ω,

is exponentially stable if|y0|H1/2−ε (Ω)∩V0
n(Ω) is small enough for some 0< ε < 1/4.

In the three dimensional case we obtain a similar result by studying the control problem

(Q) inf
{

I(y,u) | (y,u) satisfies(1.4), u ∈ L2(0,∞;V0(Γ))
}

,

where

I(y,u) =
1
2

∫ T

0

∫

Ω
|(−P∆)−1/2Py|2 +

1
2

∫ T

0

∫

Γ
|R1/2

A u|2,

and
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∂y
∂ t

−ν∆y+(w ·∇)y+(y ·∇)w−ωy+ ∇p= 0, in Q∞,

div y = 0 in Q∞, y = θ(t)Mu on Σ∞, y(0) = y0 in Ω.

(1.4)

The weight functionθ is aC2 function fromR
+ into [0,1], satisfyingθ(0) = 0, θ(t) = 1 for t ≥ T

for someT > 0. In that case the solutionΠω of the Riccati equation of the control problem(Q)

depends ont in the intervall[0,T]. The exponential decay is obtained in the normH1/2+ε(Ω) if
|y0|H1/2+ε

0 (Ω)∩V0
n(Ω)

is small enough.

To simplify the presentation, throughout the paper we assume thatν = 1 andM = I . For the
extension of results to the case whenM 6= I we refer to [16] and [15]. (M = I corresponds to the
case whereu acts everywhere onΓ.)

2. Oseen equation

Let us introduce the following function spaces :Hs(Ω;RN) = Hs(Ω), L2(Ω;RN) = L2(Ω),
the same notation conventions are used for the spacesHs

0(Ω;RN), and the trace spacesHs(Γ;RN).
Throughout what follows, for allu ∈ L2(Ω) such that divu ∈ L2(Ω), we denote byu ·n the nor-
mal trace ofu in H−1/2(Γ) [17]. Following [7], we use the letterV to define different spaces of
divergence free vector functions and for some associated trace spaces:

Vs(Ω) =
{

u ∈ Hs(Ω) | divu = 0 in Ω,
〈

u ·n,1
〉

H−1/2(Γ),H1/2(Γ)
= 0

}

for s≥ 0,

Vs
n(Ω) =

{

u ∈ Hs(Ω) | div u = 0 in Ω, u ·n = 0 onΓ
}

for s≥ 0,

Vs
0(Ω) =

{

u ∈ Hs(Ω) | div u = 0 in Ω, u = 0 onΓ
}

for s> 1/2,

Vs(Γ) =
{

u ∈ Hs(Γ) |

∫

Γ
u ·n = 0

}

for s≥ 0.

For s < 0, Vs(Γ) is the dual space ofV−s(Γ), with V0(Γ) as pivot space. For spaces of time
dependent functions we set

Vs,σ (Q) = Hσ(0,T;V0(Ω))∩L2(0,T;Vs(Ω)),

and

Vs,σ (Σ) = Hσ(0,T;V0(Γ))∩L2(0,T ;Vs(Γ)).

Observe that

Vs,σ (Q) = Hs,σ (Q)∩L2(0,T;V0(Ω)) for all s≥ 0 andσ ≥ 0,

whereHs,σ (Q) = (Hs,σ (Q))N, andHs,σ (Q) corresponds to the notation in [12].

We denote byγτ ∈ L (V0(Γ)) andγn ∈ L (V0(Γ)) the operators defined by

γnu = (u ·n)n and γτ u = u− γnu for all u ∈ V0(Γ).

As usual, fors> 1/2, γ0 ∈ L (Vs(Ω),Vs−1/2(Γ)) denotes the trace operator.
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Let us denote byP the orthogonal projection operator inL2(Ω) on V0
n(Ω). Recall that the

Stokes operatorA0 = P∆, with domainD(A0) = V2(Ω)∩V1
0(Ω) in V0

n(Ω), is the infinitesimal
generator of a strongly continuous analytic semigroup(etA0)t≥0 onV0

n(Ω).
To study the stabilization of the Navier-Stokes equations around the unstable stationary solu-

tion w, we consider the Oseen equation

∂y
∂ t

−∆y+(w ·∇)y+(y ·∇)w+ ∇p= 0, div y = 0 in Q,

y = u on Σ, y(0) = y0 in Ω,

(2.1)

wherew belongs toV3(Ω).
To study equation (2.1) we introduce the unbounded operators A andA∗ in V0

n(Ω) defined by

D(A) =
{

y ∈ V1
0(Ω) | P∆y−P((w ·∇)y)−P((y ·∇)w)∈ V0

n(Ω)
}

= V2(Ω)∩V1
0(Ω),

D(A∗) =
{

y ∈ V1
0(Ω) | P∆y+P((w ·∇)y)−P((∇w)Ty) ∈ V0

n(Ω)
}

= V2(Ω)∩V1
0(Ω),

Ay = P∆y−P((w ·∇)y)−P((y ·∇)w) and A∗y = P∆y+P((w ·∇)y)−P((∇w)Ty) .

Throughout what follows we assume thatλ0 > 0 is such that

∫

Ω

(

λ0|y|2 + |∇y|2 +((w ·∇)y) ·y+((y ·∇)w) ·y
)

dx≥
1
2

∫

Ω
(|y|2 + |∇y|2)dx

and
∫

Ω

(

λ0|y|2 + |∇y|2− ((w ·∇)y) ·y+((∇)w)Ty) ·y
)

dx≥
1
2

∫

Ω
(|y|2 + |∇y|2)dx

(2.2)

for all y ∈ V1
0(Ω).

The semigroup(etA)t≥0 on V0
n(Ω), generated by(A,D(A)), can be continuously extended to

(D(A∗))′ = (V2(Ω)∩V1
0(Ω))′. This corresponds to the so-called extrapolation method. We shall

denote by(etÃ)t≥0 the extended semigroup, and by(Ã,D(Ã)) its infinitesimal generator. It is well
known thatD(Ã) = V0

n(Ω).
To rewrite equation (2.1) in the form of an evolution equation, we introduce the Dirichlet

operatorsDA andDp,A associated withλ0I −A, defined by(DAg,Dp,Ag) = (v,π), where, for all
g∈ V0(Γ), (v,π) is the solution to the equation

λ0v−∆v+(w ·∇)v+(v ·∇)w+ ∇π = 0 and divv = 0 in Ω, v = g on Γ .

Definition 1. A functiony ∈ L2(0,T;V0(Ω)) is a weak solution to equation (2.1) if

Py is a weak solution of the evolution equation

Py′ = ÃPy+(λ0I − Ã)PDAu, Py(0) = Py0,

and
(I −P)y(·) = (I −P)DAγnu(·) in L2(0,T;V0(Ω)).

An alternative definition can be stated by using(etÃ0)t≥0 and its infinitesimal generator(Ã0,

D(Ã0)), where(etÃ0)t≥0 is the extension to(D(A∗
0))

′ = (V2(Ω)∩V1
0(Ω))′ of the Stokes semigroup
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(etA0)t≥0. More precisely, it can be shown (see [14, Theorem 4.2]) thaty ∈ L2(0,T;V0(Ω)) is a
weak solution to equation (2.1) in the sense of Definition 1 ifand only if

Py is a weak solution of the evolution equation

Py′ = Ã0Py+(−Ã0)PDu−P(div(w⊗y))−P(div(y⊗w)), Py(0) = Py0,

and

(I −P)y(·) = (I −P)Du(·) = (I −P)Dγnu(·),

whereDg = v is the solution to the equation

−∆v+ ∇π = 0 and divv = 0 in Ω, v = g on Γ .

We can state the following regularity result.

Theorem 1. ([14,Theorem4.1]) (i) For all Py0 ∈ V0
n(Ω) and all u ∈ L2(0,T;V0(Γ)) equation

(2.1), admits a unique weak solution in L2(0,T;V0(Ω)) in the sense of Definition 1. This solution
obeys

‖Py‖
L2(0,T;V1/2−ε

n (Ω))
+‖Py‖H1/4−ε/2(0,T;V0

n(Ω)) +‖(I −P)y‖L2(0,T;V1/2(Ω))

≤C(‖Py0‖V0
n(Ω) +‖u‖L2(0,T;V0(Γ))) for all ε > 0.

(ii ) If u ∈ Vs,s/2(Σ) with 0≤ s≤ 2, then

‖(I −P)y‖L2(0,T;Vs+1/2(Ω)) +‖(I −P)y‖Hs/2(0,T;V1/2(Ω)) ≤C‖u‖Vs,s/2(Σ).

(iii ) If u ∈ Vs,s/2(Σ) and Py0 ∈ V0∧(s−1/2)
n (Ω), with 0≤ s< 1, then

‖Py‖Vs+1/2−ε,s/2+1/4−ε/2(Q) ≤C(‖Py0‖V0∧(s−1/2)
n (Ω)

+‖u‖Vs,s/2(Σ)) for all ε > 0. (2.3)

(iv) If u ∈Vs,s/2(Σ), Py0 ∈Vs−1/2
n (Ω), with 1< s≤ 2, and if Py0 andu(0) satisfy the compatibility

condition

γ0(P(y0−Du(0))) = 0,

then the estimate(2.3) is satisfied.

3. A finite time horizon problem

To deal with the stabilization problem formulated in the introduction, we first study the fol-
lowing optimal control problem

(QT
ζ ) inf

{

JT(y,u) | (y,u) satisfies(3.1), u ∈ V0,0(Σ0,T)
}

,

where

JT(y,u) =
1
2

∫ T

0

∫

Ω
|y|2 dxdt+

1
2

∫ T

0
|u(t)|2V0(Γ) dt,

and
∂y
∂ t

−∆y+(w ·∇)y+(y ·∇)w+ ∇p= 0 in Q0,T = Ω× (0,T)

div y = 0 in Q0,T , y = u on Σ0,T = Γ× (0,T), y(0) = ζ in Ω.

(3.1)
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Thus, ify is the solution of (3.1), we have

JT(y,u) = IT(y,u) =
1
2

∫ T

0

∫

Ω
|Py|2 +

1
2

∫ T

0

∫

Γ
|R1/2

A γnu|2 +
1
2

∫ T

0

∫

Γ
|γτ u|2,

whereRA is the operator defined by

RA = D∗
A(I −P)DA+ I .

The control problem(QT
ζ ) is equivalent to

(PT
ζ ) inf{IT(y,u) | (y,u) satisfies (2.3), u ∈ V0,0(Σ0,T)},

where

Py′ = APy+Bu in (0,T), Py(0) = ζ , and (I −P)y = (I −P)DAγnu, (3.2)

with B = (λ0I −A)PDA.

Problem(PT
ζ ) admits a unique solution(yζ ,uζ ), where

uζ = −R−1
A B∗Φζ ,

and(yζ ,Φζ ) is the unique solution to the system

Py′ = APy−BR−1
A B∗Φ in (0,T), Py(0) = ζ , (I −P)y = −(I −P)DAγnR−1

A B∗Φ,

−Φ′ = A∗Φ+Py in (0,T), Φ(T) = 0.

The operatorB∗ is determined by

B∗Φ = −
∂Φ
∂n

+ ψn−
1
|Γ|

∫

Γ
ψ n, ∀Φ ∈ V2(Ω)∩V1

0(Ω),

where|Γ| is the (N− 1)-dimensional Lebesgue measure ofΓ, andψ ∈ H1(Ω)/R is the unique
solution of

∇ψ = (I −P)
[

∆Φ+(w ·∇)Φ− (∇w)TΦ
]

.

If we denote byΠ(T) ∈ L (V0
n(Ω)) the mapping

Π(T) : ζ 7−→ Φζ (0),

we can prove thatΠ(T) = Π(T)∗ ≥ 0, and that it also belongs toL (V0
n(Ω),V2(Ω)∩V1

0(Ω)).
Moreover the value function of(PT

ζ ) andΠ(T) obeys the identity:

inf(PT
ζ ) =

1
2

(

Π(T)ζ ,ζ
)

V0
n(Ω)

.
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4. An infinite time horizon problem

Now we want to study the problem(P∞
ζ ), and we want to study the regularity of its solution

in function of the regularity ofζ . Let us recall that problem(P∞
ζ ) is defined by

(P∞
ζ ) inf

{

I(y,u) | (y,u) satisfies(4.1), u ∈ V0,0(Σ∞)
}

,

where
I(y,u) =

1
2

∫ ∞

0

∫

Ω
|Py|2 dxdt+

1
2

∫ ∞

0

(

|γτu(t)|2V0(Γ) + |R1/2
A γnu(t)|2V0(Γ)

)

dt,

and
Py′ = APy+Bu in (0,∞), y(0) = ζ , and (I −P)y = (I −P)DAγnu. (4.1)

Using the null controllability result stated in [5], we can show that there exists a controlu ∈

V0,0(Σ∞) such that the corresponding solutionyu to equation (4.1) obeys

I(yu,u) < ∞.

Thus, using the so-called direct method, we can prove that problem(P∞
ζ ) admits a unique solution

(yζ ,uζ ), that we want to characterize.
From the dynamic programming principle it follows that, forall ζ ∈ V0

n(Ω), the mapping

T 7−→
(

Π(T)ζ ,ζ
)

V0
n(Ω)

is nondecreasing. Moreover we have
(

Π(T)ζ ,ζ
)

V0
n(Ω)

≤ I(yζ ,uζ ) < ∞.

Therefore there exists an operatorΠ ∈ L (V0
n(Ω)) satisfyingΠ = Π∗ and

Πζ = limT→∞Π(T)ζ for all ζ ∈ V0
n(Ω).

Thus we have proved the following result.

Theorem 2. For all ζ ∈ V0
n(Ω), problem(P∞

ζ ) admits a unique solution(yζ ,uζ ). There exists

Π ∈ L (V0
n(Ω)), obeyingΠ = Π∗ ≥ 0, such that the optimal cost is given by

I(yζ ,uζ ) =
1
2

(

Πζ ,ζ
)

V0
n(Ω)

.

To study the regularizing property of the operatorΠ, we first establish the following theorem.

Theorem 3. For everyζ ∈ V0
n(Ω), the system

Py′ = APy−BR−1
A B∗Φ in (0,∞), y(0) = ζ ,

(I −P)y = −(I −P)DAγnR−1
A B∗Φ,

−Φ′ = A∗Φ+Py in (0,∞), Φ(∞) = 0,

Φ(t) = ΠPy(t) for all t ∈ (0,∞) ,

(4.2)
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admits a unique solution in L2(0,∞;V0(Ω))×V2,1(Q∞). This solution satisfies:

‖(I −P)y‖L2(0,∞;V3/2(Ω)) +‖(I −P)y‖H1/2(0,∞;V0(Ω))

+‖Py‖Cb(R+;V0
n(Ω)) +‖Py‖V1,1/2(Q∞) +‖Φ‖V3,3/2(Q∞) ≤C|ζ |V0

n(Ω) .

The pair(y,−R−1
A B∗Φ) is the solution of(P∞

ζ ).

From Theorem 3 we deduce thatΦζ belongs toCb(R
+;V2(Ω)∩V1

0(Ω)). In particular we have

|Φζ (0)|V2(Ω)∩V1
0(Ω) ≤C|ζ |V0

n(Ω) .

This means thatΠ is also a bounded operator fromV0
n(Ω) into V2(Ω)∩V1

0(Ω).
Now using Theorem 3, the definition ofB∗, and regularity results for the Oseen equation, we

can prove the following regularity result.

Corollary 1. ([15,Corollary 4.3]) If ζ ∈V1/2−ε
n (Ω) for some0< ε < 1/2, then the solution(y,Φ)

of system(4.2)belongs toV3/2−ε ,3/4−ε/2(Q∞)×V7/2−ε ,7/4−ε/2(Q∞), and we have:

‖y‖V3/2−ε,3/4−ε/2(Q∞) +‖Φ‖V7/2−ε,7/4−ε/2(Q∞) +‖B∗Φ‖V3/2−ε,3/4−ε/2(Q∞) ≤C|ζ |
V1/2−ε

n (Ω)
.

From Corollary 1 it follows thatΠ is a bounded operator fromV1/2−ε
n (Ω) into V5/2−ε(Ω)∩

V1
0(Ω), and the operatorB∗Π is bounded fromV1/2−ε

n (Ω) into V1−ε
n (Γ) for all 0 < ε < 1/2.

With Theorem 3, we can easily establish that the family of operators
(

ζ 7−→ Pyζ (t)
)

t≥0

is an exponentially stable semigroup onV0
n(Ω). Let us denote it by(etAΠ)t≥0, and let(AΠ,D(AΠ))

be its infinitesimal generator. For allf ∈ V0
n(Ω) the equation

y ∈ V0
n(Ω), AΠy = f,

admits a unique solution given by

y =
∫ ∞

0
etAΠ fdt.

Thereforey ∈ D(AΠ) if and only if there existsf ∈ V0
n(Ω) such thaty =

∫ ∞
0 etAΠ fdt. It can also be

proved thaty ∈ D(AΠ) if and only if y ∈ V0
n(Ω) andAy−BR−1

A B∗Πy ∈ V0
n(Ω).

Theorem 4. ([15,Theorem4.5]) The operatorΠ is the unique weak solution to the algebraic Ric-
cati equation

Π∗ = Π ∈ L (V0
n(Ω)) and Π ≥ 0,

for all y ∈ V0
n(Ω), Πy ∈ V2(Ω)∩V1

0(Ω) and |Πy|V2(Ω) ≤C|y|V0
n(Ω),

A∗Π+ ΠA−ΠBτB∗
τΠ−ΠBnR

−1
A B∗

nΠ+ I = 0,

where Bτ = Bγτ and Bn = Bγn.
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5. Stabilization of the two dimensional Navier-Stokes equations

Throughout this section, we assume thatN = 2.

5.1 First stabilization result

Consider the Navier-Stokes equations with the linear feedback law determined in the previous
section:

Py′ = AΠPy+F(y) in (0,∞), Py(0) = y0,

(I −P)y = −(I −P)DAR−1
A B∗

nΠPy in (0,∞),
(5.1)

whereF(y) = −P(y ·∇)y.

We can now state our first stabilization result.

Theorem 5. ([15,Theorem6.1]) For all 0 < ε < 1/4, there existsµ0 > 0 and a nondecreasing
functionη from R

+ into itself, such that ifµ ∈ (0,µ0) and|ζ |
V1/2−ε

n (Ω)
≤ η(µ), then equation (5.1)

admits a unique solution in the set

Dµ =
{

y ∈ V3/2−ε ,3/4−ε/2(Q∞) | ‖y‖V3/2−ε,3/4−ε/2(Q∞) ≤ µ
}

.

Moreover(I −P)y belongs to H3/4−ε/2(0,∞;V1/2(Ω))∩L2(0,∞;V3/2−ε (Ω)).

To prove this theorem, we first show that the mapping

z 7−→ F(z)

is locally Lipschitz fromV3/2−ε ,3/4−ε/2(Q∞) into L2/(1+2ε)(0,∞;V0
n(Ω))∩L2(0,∞;(V2ε (Ω))′). More

precisely we have

‖PF(z)‖L2/(1+2ε)(0,∞;V0
n(Ω)) +‖PF(z)‖L2(0,∞;(V2ε (Ω))′) ≤C‖z‖2

V3/2−ε,3/4−ε/2(Q∞),

and
‖PF(z1)−PF(z2)‖L2/(1+2ε)(0,∞;V0

n(Ω)) +‖PF(z1)−PF(z2)‖L2(0,∞;(V2ε (Ω))′)

≤C
(

‖z1‖V3/2−ε,3/4−ε/2(Q∞) +‖z2‖V3/2−ε,3/4−ε/2(Q∞)

)

‖z1−z2‖V3/2−ε,3/4−ε/2(Q∞),

for all z, z1, z2 ∈ V3/2−ε ,3/4−ε/2(Q∞). After that we study the mapping

Ψ : z 7−→ yz,

whereyz is the solution to the system

Py′ = AΠPy+F(z) in (0,∞), Py(0) = y0,

(I −P)y = −(I −P)DAR−1
A B∗

nΠPy in (0,∞).

To show that the mappingΨ is a contraction inDµ (is µ0 andη are suitably chosen), we prove the
following Lemma.
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Lemma 1. ([15,Lemma6.2]) For all y0 ∈ V1/2−ε
n (Ω) and all f ∈ L2/(1+2ε)(0,∞;V0

n(Ω))∩L2(0,∞;
(V2ε(Ω))′) the solution to the equation

y′ = AΠy+ f, y(0) = y0, (5.2)

obeys

‖y‖V3/2−ε,3/4−ε/2(Q∞) ≤C1
(

|y0|V1/2−ε
n (Ω)

+‖f‖L2/(1+2ε)(0,∞;V0
n(Ω)) +‖f‖L2(0,∞;(V2ε (Ω))′)

)

.

After that, Theorem 5 follows from a fixed point argument.

5.2 Second stabilization result

To obtain a feedback law providing an exponential stabilization of the Navier-Stokes, we are
going to use the linear feedback law determined thanks to an auxiliary problem. For that, we set

ŷ = eωty, û = eωtu with ω > 0.

If
Py′ = APy+PF(y)+Bu, Py(0) = y0,

(I −P)y = (I −P)DAγu,

thenŷ is the solution to the system

Pŷ′ = APŷ+ ω ŷ+e−ωtF(ŷ)+Bû, Pŷ(0) = y0,

(I −P)ŷ = (I −P)DAγnû.

SetAω = A+ ω I , and letΠω be the solution to the algebraic Riccati equation:

Πω = Π∗
ω ≥ 0, ΠωAω +A∗

ωΠω −ΠωBτB∗
τ Πω −ΠωBnR−1

A B∗
nΠω + I = 0.

The existence of a unique solution to this equation may be proved as in section 4. Consider the
Navier-Stokes equations with the linear feedback law:

Pŷ′ = AΠω Pŷ+e−ωtF(ŷ), Pŷ(0) = y0,

(I −P)ŷ = −(I −P)DAR−1
A B∗

nΠωPŷ,
(5.3)

where
AΠω = A+ ω I −BτB∗

τΠω −BnR−1
A B∗

nΠω .

As previously, ifŷ is a solution to (5.3), theny = e−ωt ŷ is the solution of

Py′ = APy−BτB∗
τ ΠωPy−BnR−1

A B∗
nΠωPy+F(y), Py(0) = y0,

(I −P)y = −(I −P)DAR−1
A B∗

nΠωPy.
(5.4)

Theorem 6. For all 0 < ε < 1/4, there existsµ0 > 0 and a nondecreasing functionη0 from R
+

into itself, such that ifµ ∈ (0,µ0) and‖y0‖V1/2−ε
n (Ω)

≤ η0(µ), the equation(5.4) admits a unique
solution in the set

Dµ =
{

y ∈ V3/2−ε ,3/4−ε/2(Q∞) | ‖eω (·)y‖V3/2−ε,3/4−ε/2(Q∞) ≤ µ
}

.

Moreovery belongs to Cb([0,∞);V1/2−ε (Ω)), and it satisfies

|y(t)|V1/2−ε (Ω) ≤C(w,µ) e−ωt.
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6. Stabilization of the three dimensional Navier-Stokes equations

Throughout this section, we assume thatN = 3, w belongs toV5(Ω), andΩ is of classC6.
Let us first explain why the feedback law determined in section 4 is not convenient to stabilize the
Navier-Stokes equations in 3 dimension.

In 3 dimension the mapping
z 7−→ F(z)

is locally Lispschitz fromV3/2−ε ,3/4−ε/2(Q∞) into L2(0,∞;(V1/2+2ε (Q∞))′). But we cannot prove
that the mapping

f 7−→
∫ t

0
e(t−τ)AΠf(τ)dτ ,

is continuous fromL2(0,∞;(V1/2+2ε (Ω))′) into V3/2−ε ,3/4−ε/2(Q∞), and we cannot use a fixed
point argument as in 2 dimension. To deal with the nonlinear termF(y) in 3 dimension, we have
to look for solutions to the Linear-Quadratic problem inV3/2+ε ,3/4+ε/2(Q∞) for someε > 0 (or in
L2(0,∞;V3/2+ε (Ω))∩L∞(0,∞;V1/2+ε (Ω))).

To obtain such a regularity result and to obtain a feedback law stabilizing the Navier-Stokes
equation, an alternative way may be to choose the functionalI in problem(P∞

ζ ) so that the mapping

ζ 7−→
(

Πyζ (t),yζ (t)
)

V0
n(Ω)

,

be a Lyapunov function of the closed loop system inV1/2+ε(Ω). This method has been successfully
applied in the case of an internal control [1]. Its extensionto the case of a boundary control (when
the normal component of the control is equal to zero, and whenthe control is applied everywhere
on the boundaryΓ) has been studied very recently in [4]. The idea in [4] consists in choosing a
functional I coervive inL2(0,∞;V3/2+ε (Ω)) for someε > 0. TheL2(0,∞;V3/2+ε (Ω))-regularity
combined with the state equation of the Linear-Quadratic problem is sufficient to deal with the
nonlinear termF(y) in 3 dimension.

The price to pay is that the corresponding algebraic Riccatiequation is only defined inD(AΠ),
which is itself unknown sinceΠ is not determined by an equation independent ofD(AΠ).

Here we follow a different approach. We modify the control problem(P∞
ζ ) in two ways. We

modify both the cost function and the control operator. The control operatorB is replaced byθB,
where the weight functionθ ∈C∞([0,∞)) satisfies

θ(t) ∈ [0,1] for all t ∈ R
+,

θ(0) = 0 and θ(t) = 1 for all t ≥ T,

with T > 0 is given fixed. The new state equation is

Py′ = APy+ θBu in (0,∞), y(0) = y0, and (I −P)y = (I −P)DAu. (6.1)

To understand the role of the weight functionθ , we observe that ify0 ∈ V1/2+ε
0 (Ω) and if u ∈

V1+ε ′,1/2+ε ′/2(Σ∞) for someε ′ > ε > 0, then the solution to equation (6.1) belongs toL2
loc([0,∞);

V3/2+ε(Ω))∩H3/4+ε/2
loc ([0,∞);V0(Ω)). This regularity result is obtained because the trace of the

initial condition y0 and the initial value of the boundary controlθu are both equal to zero, and
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consequently they satisfy a compatibility condition whichcannot be obtained without the presence
of θ .

In the cost function we replace
∫ ∞

0

∫

Ω |Py|2 by
∫ ∞

0

∫

Ω |(−A0)
−1/2Py|2. More precisely we con-

sider the family of control problems

(Q t̄,y0) inf
{

I(t̄,y,u) | (y,u) satisfies(6.2), u ∈ V0,0(Σt̄,∞)
}

,

where
I(t̄,y,u) =

1
2

∫ ∞

t̄

∫

Ω
|(−A0)

−1/2Py|2 +
1
2

∫ ∞

t̄

∫

Γ
|R1/2

A γnu|2 +
1
2

∫ ∞

t̄

∫

Γ
|γτu|2,

and
Py′ = APy+ θBu in (t̄,∞), Py(t̄) = y0, and (I −P)y = (I −P)DAu. (6.2)

Thus contrarily to what is done in [1] and in [4], where a norm stronger than theL2-norm is
used in the cost function, here we take a norm weaker than theL2-norm. The regularity result for
the optimal state is recovered by studying the optimality system.

Theorem 7. For all y0 ∈ V0
n(Ω) and all t̄ ∈ [0,∞), problem(Q t̄ ,y0) admits a unique solution

(yt̄ ,y0,ut̄,y0). There existsΠ(t̄) ∈ L (V0
n(Ω)) such that the optimal cost is given by

I(t̄,yt̄ ,y0,ut̄,y0) =
1
2

(

Π(t̄)y0,y0

)

V0
n(Ω)

.

Proof. The proof is completely analogous to the one in [15, Theorem 4.1] or to the proof of
Theorem 2.

Lemma 2. (see[16]) For everyy0 ∈ V0
n(Ω), the system

Py′ = APy−θ2BτB∗
τΦ−θ2BnR−1

A B∗
nΦ in (t̄,∞), y(t̄) = y0,

−Φ′ = A∗Φ+(−A0)
−1Py in (t̄,∞), Φ(∞) = 0,

Φ(t) = Π(t)Py(t) for all t ∈ (t̄,∞) ,

(I −P)y(t) = −(I −P)DAθ2BnR−1
A B∗

nΠ(t)Py(t) in (t̄,∞)

(6.3)

admits a unique solution in L2(t̄,∞;V0
n(Ω))×V2,1(Qt̄,∞). This solution belongs toCb([t̄,∞);V0

n(Ω))

∩V1,1/2(Qt̄,∞)×
(

L2(t̄,∞;V5(Ω))∩H3/2(t̄,∞;V2(Ω))
)

and it satisfies:

‖y‖Cb([t̄ ,∞);V0
n(Ω)) +‖y‖V1,1/2(Qt̄,∞) +‖Φ‖L2(t̄,∞;V5(Ω))∩H3/2(t̄,∞;V2(Ω)) ≤C|y0|V0

n(Ω) .

The pair(y,−θB∗
τ Φ−θR−1

A B∗
nΦ) is the solution of(Qt̄ ,y0).

Corollary 2. (see[16]) If y0 ∈V1/2−ε
n (Ω) for some0< ε < 1/2, then the solution(y,Φ) of system

(6.3) belongs toV3/2−ε ,3/4−ε/2(Qt̄,∞)×
(

L2(t̄,∞;V11/2−ε (Ω))∩H7/4−ε/2(t̄,∞;V2(Ω))
)

, and we
have:

‖y‖V3/2−ε,3/4−ε/2(Qt̄,∞) +‖Φ‖L2(t̄,∞;V11/2−ε (Ω))∩H7/4−ε/2(t̄,∞;V2(Ω)) ≤C|y0|V1/2−ε
n (Ω)

,

‖B∗Φ‖L2(t̄,∞;V4−ε (Γ))∩H3/4−ε/2(t̄,∞;V5/2(Γ)) ≤C|y0|V1/2−ε
n (Ω)

.
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If y0 ∈V1/2+ε
0 (Ω) for some0≤ ε ≤ 1/2 and if t̄ = 0, then the solution(y,Φ) of system(6.3)belongs

to V3/2+ε ,3/4+ε/2(Q∞)×
(

L2(0,∞;V11/2+ε (Ω))∩H7/4+ε/2(0,∞;V2(Ω))
)

, and we have:

‖y‖V3/2+ε,3/4+ε/2(Q∞) +‖Φ‖L2(0,∞;V11/2+ε (Ω))∩H7/4+ε/2(0,∞;V2(Ω)) ≤C|y0|V1/2+ε
n (Ω)

,

and
‖B∗Φ‖L2(0,∞;V7/2+ε (Ω))∩H3/4+ε/2(0,∞;V2(Ω)) ≤C|y0|V1/2+ε

n (Ω)
.

Due to this regularity result we are able to define a feedback law which stabilizes the Navier-Stokes
equations (see [16]).
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