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1. Introduction

Let Q be a bounded and connected domaiffnor R3 with a boundary of classC*, v > 0,
and consider a coupl@v, x) — a velocity field and a pressure — solution to the stationaayiéi-
Stokes equations if:

—vAw+ (w-O)w+0Ox=f anddiw=0inQ, w=ug onTl.

We assume that is regular and is an unstable solution of the instationaryiéeStokes equations.
We want to determine a Dirichlet boundary contglin feedback form, localized in a part of the
boundary”, so that the corresponding controlled system:

9y
ot
dvy=0 inQe, y=Mu onZ,, Yy(0)=ypinQ,

—VAy + (y-O)w+ (w-O)y+(y-O)y+0Op=0, 1.1

be stable for initial valuego small enough in an appropriate spaXgQ). In this setting,Q. =
Q x (0,0), 5, =T x (0,»), X(Q) is a subspace of2(Q) = {y €L?(Q)| divy=0inQ,y-n=

0 onl'}, w € X(Q), and the operatadvl is a restriction operator ensuring that the control is lzed

on a part of the boundary (see [14]). If we setz,q) = (w+Y, x + p) and ifu = 0, we see that
(z,q) is the solution to the Navier-Stokes equations

%—VAZJF(Z-D)ZJqu:f, divz=0 inQ,

Z=Ug ONZ,, 2z(0)=w+ypinQ.

Thusyy is a perturbation of the stationary solutian Whenw € L*(Q) andyp € VI(Q)NL4(Q)
with Yol +(q) sSmall enough, the existence of a boundary contrsich that the solution to equation
(1.1) exponentially decreases in the norm of the spE€®) = VI(Q)NL*(Q), follows from a local
exact controllability result stated in [5, Theorem 2]. Bl fproof in [5] does not give any way to
define such a control in feedback form. In the three-dimeradicase, and wheK(Q) = {y €

HY(Q)| divy =0 inQ, (y- N, Dy-12(m) iz = 0}, the existence of a control exponentially
stabilizing (1.1) is proved in [8]. One way to construct rebteedback laws consists in using the
methods of the optimal control theory. This approach has lségdied in the case of an internal
control [2, 1, 3], and has been numerically tested with a bdawn control in the very specific
geometry of the rectangular driven cavity [10] and when therral component of the control is
equal to zero. In many engineering applications [13, 11]rthemal component of the control
variable is not equal to zero. This is the situation we caarsicbre.

The Linear-Quadratic theory for the Dirichlet control oétlinearized Navier-Stokes equations
has been studied in a very recent work [4], in the case whendiraal component of the boundary
control is zero, and when the control is applied everywher¢he boundary. To the best of our
knowledge the case when the normal component is not equafadhas not yet been studied in the
literature. Our main objectives are:

- first to develop the Linear-Quadratic theory over an infirtime horizon of the Dirichlet
boundary control of the Oseen equations when the controkalized on a part of the boundary,
and when the normal component of the control is not zero,
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- next to show that the linear feedback law, calculated withlinearized model, and applied
to the nonlinear equation (1.1), provides a local expoaéstabilization of the state in some ap-
propriate spacX(Q).

In the two dimensional case the feedback control law is abthiby studying the control
problem

(2) inf{J(y,u) | (y,u) satisfieg(1.2), u ¢ L2(o,oo;v°(r))},

1 /® 1 /®
J(y,u):é/o /Q\y\zdxdtJré/o /r\u\zdxdt

9 .
d—f —VAy+(w-O)y+(y-Ow—wy+Up=0, inQu,

dvy=0 inQ., y=MuonX., Yy(0) =yp inQ,

where

and

(1.2)

whereVO(I) = {y e L2(M) [ {y-nDyver) prer) = 0}. The coefficientw > 0, which is not
present in (1.1), is added in equation (1.2) in order to quermthe exponential decay in the norm
HY/2-¢(Q), 0 < £ < 1/4, of the solution of the nonlinear closed loop system defineldw. We
show that the control probleri?) can be rewritten in the form of another control problem in
which the state variable By — whereP is the so-called Helmholtz projection operator — andynot
This transformation is essential in our approach. It leads Riccati equation which is the natural
one for the new control problem, but which is not the expected if we only consider problem
(£2). This transformation of #?) into a new control problem is a direct consequence of ravgiti
equation (1.2) in the form:

Py’ = APy+ wPy+BMu,  y(0) =Y,

1.3
(1 =P)y = (I — P)DawMu. &9

The operatorA is the Oseen operator, the control operator is defined by (Agl — A)Da for
someAg > 0, andD4 is the Dirichlet operator associated witgl — A. We refer to [14] for the
transformation of equation (1.2) into (1.3), and for regtyaresults for equation (1.3). Denoting
by N, the solution to the Riccati equation of the control probles), and settindRa = MDA (1 —
P)DaM + |, we show that the closed loop system

ay .
E_VAy—I_(WD)y—i_(yD)W—FDp:O) n Q°°7
divy=0 inQw, y=-MR!MBM4Py onZ, y(0)=yo inQ,

is exponentially stable ifyo|y1/2-< )ve(q) is sSmall enough for someQ & < 1/4.
In the three dimensional case we obtain a similar result igystg the control problem

(2) inf{l(y,u) | (y,u) satisfieg(1.4), u e L2(0,oo;V°(I'))},

1 /7 _ 1 /7 2
v =3 [ [Py ey S [0[RP,

where

and
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ay .

— —VAYy+(w-O)y+(y-Ow—wy+0p=0, in Qu,

5 VAy+(w-D)y+(y-D) y+0p Q (1.4)
dvy=0 inQ., y=06(t)MuonX,, y(0)=ys inQ.

The weight functiord is aC? function fromR™ into [0, 1], satisfying8(0) =0, 8(t) = 1fort > T
for someT > 0. In that case the solutidf, of the Riccati equation of the control problep®)
depends on in the intervall[0, T]. The exponential decay is obtained in the nd#t?t¢(Q) if
\yo\Hé/zH(Q)ng(Q) is small enough.

To simplify the presentation, throughout the paper we asstimtv = 1 andM = 1. For the
extension of results to the case whdn£ | we refer to [16] and [15]. Nl = | corresponds to the
case where acts everywhere oh.)

2. Oseen equation

Let us introduce the following function space$3(Q;RN) = HS(Q), L?(Q;RN) = L?(Q),
the same notation conventions are used for the spgage3; RN), and the trace spacet’(I';RN).
Throughout what follows, for all € L?(Q) such that diw € L2(Q), we denote by - n the nor-
mal trace ofu in H=1/2(I") [17]. Following [7], we use the letteV to define different spaces of
divergence free vector functions and for some associatee gpaces:

VS(Q) = {u eH3Q) | divu=0inQ, (u- n’1>H*1/2(F),H1/2(F) = 0} for s> 0,
Vﬁ(Q):{ueHs(QH divu=0 inQ,u-n:OonF} for s> 0,
VS(Q):{ueHs(Q)] divu=0 inQ,u:OonI‘} fors>1/2,

Vs(r):{ueHS(I’)\/ru-n:O} fors> 0.

Fors < 0, VS(I') is the dual space of ~S(I'), with VO(I") as pivot space. For spaces of time
dependent functions we set

V32(Q) =H?(0,T;V°(Q))NL(0, T;V¥(Q)),

and
VS9(Z) =H(0,T;VO(M))NL3(0,T;VS()).

Observe that
VS9(Q) =H%9(Q)NL3(0,T;V%(Q))  foralls>0ando >0,

whereH%9(Q) = (H3?(Q))N, andHS? (Q) corresponds to the notation in [12].
We denote by, € .Z(VO(IN)) andy, € £ (VO(I)) the operators defined by

yau=(u-n)n and yu=u—yu forallueVor).

As usual, fors > 1/2, yp € Z(VS(Q),VSY2(I")) denotes the trace operator.
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Let us denote by the orthogonal projection operator irf(Q) on VI(Q). Recall that the
Stokes operatoA; = PA, with domainD(Ag) = VZ(Q) N V(Q) in VI(Q), is the infinitesimal
generator of a strongly continuous analytic semigréeif®);~o onV3(Q).

To study the stabilization of the Navier-Stokes equaticsiiad the unstable stationary solu-
tion w, we consider the Oseen equation

oy . .
— —Ay+(w-O)y+ (y-Ow+0Op=0, dvy=0 inQ,
o~ Ay+(w-Dy+(y-0) p y Q 2.1)

y=uonXZ, Yy(0) =ypinQ,

wherew belongs tov3(Q).
To study equation (2.1) we introduce the unbounded operatandA* in VO(Q) defined by

D(A) = {y € V5(Q) | PAy —P((w-D)y) —P((y-O)w) € VE(Q)} =V2(Q)NV5(Q),
D(A") = {y € V5(Q) | PAy +P((w-D)y) — P((Ow)Ty) € VS(Q)} =VZ(Q)NVH(Q),
Ay = PAy —P((w-0)y) —P((y-O)w) and A"y =PAy+P((w-0)y) —P((Ow)Ty).

Throughout what follows we assume thgt> 0 is such that

/ (Roly[-+ |0y + (w-D)y) -y + ((y- Dyw) -y ) dx > %/(IylerIDyIZ)dx
Q Q
and (2.2)

[ (oly+ 10y = (w-0)y)-y+ (Ow)"y)-y) dx= 5 [ (y2-+10y)ox
Q Q

forally € V§(Q).

The semigrougé”);>0 on VY(Q), generated byA D(A)), can be continuously extended to
(D(A")) = (V?(Q)NV3(Q))'. This corresponds to the so-called extrapolation methoel.skidll
denote by(éA);-o the extended semigroup, and By, D(A)) its infinitesimal generator. It is well
known thatD(A) = V9(Q).

To rewrite equation (2.1) in the form of an evolution equatieve introduce the Dirichlet
operatorsDa andDy o associated witthgl — A, defined by(Dag, DpaQ) = (v, ), where, for all
ge VO(I), (v, m) is the solution to the equation

Av—Av+ (w-O)v+ (v-Ow+0Omr=0 and diw=0inQ, v=g onrl.
Definition 1. A functiony € L2(0,T;V°(Q)) is a weak solution to equation (2.1) if

Py is a weak solution of the evolution equation

Py’ = APy + (Aol —A)PDau,  Py(0) = Pyo,
and
(I =P)y(-) = (1 =P)Dayu(-) inL%(0,T;V°(Q)).

An alternative definition can be stated by us(miﬁ)tzo and its infinitesimal generatd@y,

D(Ao)), Where(e“xO)tZO is the extension tD(A5)) = (V2(Q)NV3(Q))’ of the Stokes semigroup
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(6%9);>0. More precisely, it can be shown (see [14, Theorem 4.2])yhat 2(0,T;VO(Q)) is a
weak solution to equation (2.1) in the sense of Definitiondnidl only if

Py is a weak solution of the evolution equation
Py’ = AgPy + (—Ag)PDu — P(div(wy)) — P(div(y@w)),  Py(0) = Py,
and
(I=P)y(-) = (I =P)Du(-) = (I =P)Dynu("),
whereDg = v is the solution to the equation
—Av+0Om=0 and diw=0inQ, v=g onl.
We can state the following regularity result.

Theorem 1. ([14, Theoremd.1]) (i) For all Py € VO(Q) and allu € L?(0,T;VO(I")) equation
(2.1), admits a unique weak solution iA(D, T;V°(Q)) in the sense of Definition 1. This solution
obeys

HPYHLz(O.T;Vrl]/Zfs(Q)) +IPYllnva-ero1vo@) + 1 =PIz 132 @)

< C(IIPyollvaq) + [lUllzorvory)  forall e >0.
(i) If u € VS¥2(Z) with 0 < s < 2, then

(1 =P)Yl 20 ravst1/2()) + (1= P)YIlns2i0m:v12(0)) < Cllullvsszs)-
(iii ) If u € VS2(3) and Pyo € v‘n’“S*l/ 2)(Q), with0 < s< 1, then

”Py|’VH1/2—S,S/2+1/4—8/2(Q) < C(”Pyo”ng(s—l/Z)(Q) + HUHVSS/Z(Z)) forall € > 0. (2.3)

(iv) If u € VSS/2(5), Pyo € V5 ¥%(Q), with 1 < s< 2, and if Py andu(0) satisfy the compatibility
condition
¥(P(yo — Du(0))) =0,

then the estimatf.3)is satisfied.

3. Afinite time horizon problem

To deal with the stabilization problem formulated in thedaluction, we first study the fol-
lowing optimal control problem

(2%) inf{JT(y,u) | (y,u) satisfieg3.1), u e V°7°(ZO7T)},

where
vy =3 [ [Paxate S [ o,

dy .
_Ay+ (W-O)y+(y-OWw+D0p=0 inQor =Qx (0,T
Fraa (w-O)y+(y-0) p Qo (0,T) 3.1)

dvy=0 inQpt, y=uonXpr=Ix(0,T), y0) = inQ.

and
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Thus, ify is the solution of (3.1), we have

1 /Ty 1 /Ty 1 /T
Iy =t =3 [ [PyRes [ RS [ [ P,
2Jo Ja 2Jo Jr 2Jo Jr

whereRy is the operator defined by
Ra=Di(l —P)Da+1.
The control problemi,@TZ) is equivalent to
(27) inf{IT(y,u) | (y,u) satisfies (2.3)u € V®°(o1)},
where
Py =APy+Bu in(0,T), Py(0)=¢, and (I—P)y=(l—P)Dayu, (3.2)

with B = (Aol — A)PDa.
Problem(£”; ) admits a unique solutiofy,,u;), where

—1p*
UZ = _RA B q)z,
and(y;,®;) is the unique solution to the system

Py’ = APy —BR!B*® in(0,T), Py(0)=¢, (I1-P)y=—(1—P)Da}R,'B*®,
—@' =A*®d+Py in(0,T), d(T)=0.
The operatoB* is determined by

B*¢:_a—¢+wn—i/‘l’n, YO € VA(Q)NV((Q),
an Ir|Jr

where|l'| is the (N — 1)-dimensional Lebesgue measurelofand ¢ € H1(Q)/R is the unique
solution of

Oy=(1-P) [Acb+(w. ) — (Dw)ch].
If we denote by1(T) € .2 (V3(Q)) the mapping
M(T) = {— P(0),

we can prove thafl(T) = IN(T)* > 0, and that it also belongs t&(V3(Q),V2(Q) NV3(Q)).
Moreover the value function c{t@g) andl(T) obeys the identity:

. 1
inf(7) =5 (NMT.2) 0
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4. An infinite time horizon problem

Now we want to study the problel(n??), and we want to study the regularity of its solution
in function of the regularity of . Let us recall that problem@?) is defined by

(27) inf{l(y,u) | (y,u) satisfieg4.1), u evovo(zm)},

where 1 ¢ 1 e
_ 2 2 1/2 2
o =5 [ [ IPyPaxdts5 [ (1w + IR u0)Fogr) ) dt.

and
Py =APy+Bu in(0,@), y(0)=¢, and (I-P)y=(I—P)Dayu.  (4.1)

Using the null controllability result stated in [5], we calmosv that there exists a controle
VO9(3,,) such that the corresponding solutignto equation (4.1) obeys

[ (yy,u) < oo.

Thus, using the so-called direct method, we can prove thﬂﬂ@m(@?) admits a unique solution
(Yz,Uz), that we want to characterize.
From the dynamic programming principle it follows that, fr € V9(Q), the mapping

T (I‘I(T)Z,Z)VR(Q)
is nondecreasing. Moreover we have
<
(H(T)Z’Z)VP‘(Q) > I(yz,UZ) < 0.
Therefore there exists an operafor . (V3(Q)) satisfyingln = M* and
N¢ =limt_,MN(T){ forall { € VAQ).

Thus we have proved the following result.

Theorem 2. For all { € V3(Q), problem(277) admits a unique solutiofyz,u;). There exists
M e .2 (VY(Q)), obeyingn = MN* > 0, such that the optimal cost is given by

1
I ==(N .
To study the regularizing property of the operdthrwe first establish the following theorem.

Theorem 3. For every{ € V3(Q), the system
Py’ = APy — BR!B*® in (0,0), y(0)
(I =P)y = —(I — P)DaynR; 'B*®,
—®' =A"®+Py in(0,0),  ®(c0)=0,
®(t) =MNPy(t) forallte (0,0),

¢,

(4.2)
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admits a unique solution in4(0,»;V°(Q)) x V?1(Q.). This solution satisfies:

(1 =P)Yl2(0pv32(0)) + [I(F = P)YllH12(0,00v0(0))
+IPYllcy®+ve) + IPYllviizq,) + [ Pllvaszq.,) < Clllveq) -

The pair(y, —R,'B*®) is the solution of 7).
From Theorem 3 we deduce tha belongs taCy(R*; VZ(Q) NV3(Q)). In particular we have

[P2(0)lvz(@)viie) < Cl{ vy -

This means thafl is also a bounded operator frov®(Q) into V2(Q) NV(Q).
Now using Theorem 3, the definition 8f, and regularity results for the Oseen equation, we

can prove the following regularity result.
Corollary 1. ([15,Corollary 4.3]) If { € Vﬁ/Z*E(Q) for somed < € < 1/2, then the solutiorty, ®)
of systen(4.2) belongs tov3/2-€3/4-¢/2(Q,,) x V7/2-&7/4-¢/2(Q,,), and we have:

HyH\/a/zfs,a/Ls/z(Qw) + ”(D”V7/2*€~7/4*€/2(Qw) + HB*(DHva/zfs,a/Ls/z(Qm) < C’Z‘V%/Z—S(Q).
From Corollary 1 it follows thafl is a bounded operator froM%/z_s(Q) into V¥/2-¢(Q)n
V1(Q), and the operatd8*I is bounded from/y/? £(Q) into V1-¢(I") for all 0 < £ < 1/2.
With Theorem 3, we can easily establish that the family ofrajues

(¢— Pyc)

t>0

is an exponentially stable semigroup BR(Q). Let us denote it bye*");~o, and let(An,D(An))
be its infinitesimal generator. For &lE VO(Q) the equation

yeViQ), Aqy=f,

admits a unique solution given by
y— / dAntdt.
0

Thereforey € D(An) if and only if there exist§ € V3(Q) such thal = [’ éAfdt. It can also be
proved thay € D(An) if and only ify € V3(Q) andAy — BR,*B Iy € V3(Q).

Theorem 4. ([15, Theoremd.5]) The operatoil1 is the unique weak solution to the algebraic Ric-
cati equation

M*=Ne.ZVQ)) and MN>0,
forally e VR(Q), My € V3(Q)NV§(Q) and [Mylyzq) < Clylvoq),
AT +MA— BB — MB,R BN +1 =0,

where B = By; and B, = By.
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5. Stabilization of the two dimensional Navier-Stokes equ#ns
Throughout this section, we assume tNat 2.

5.1 First stabilization result

Consider the Navier-Stokes equations with the linear faekltaw determined in the previous

section:
Py/ = Aﬂ Py + F(y) in (07 00)7 Py(O) = Yo,

(5.1)
(I =P)y = —(1 — P)DaR,*B;MPy in (0,),

whereF (y) = —P(y-0O)y.
We can now state our first stabilization result.

Theorem 5. ([15, T heoren6.1]) For all 0 < € < 1/4, there existg4p > 0 and a nondecreasing
functionn fromR™ into itself, such that ift € (0, tp) and |Z|v1/“(9) < n(u), then equation (5.1)
admits a unique solution in the set

Dy = {y e VIZEdAE2(Q,,) | 1Yllvaz-es/aerzq,) < Il}-
Moreover(l — P)y belongs to H/4~¢/2(0,00; V/2(Q)) NL%(0,00;V3/2-¢(Q)).
To prove this theorem, we first show that the mapping
z—F(2)

is locally Lipschitz fromv/3/2-€:3/4-¢/2(Q,,) into L% (12)(0,00; VO(Q)) NL3(0,0; (VZ(Q))"). More
precisely we have

HPF(Z)‘|L2/(1+2€)(o7oo;vg(g)) + HPF(Z)HLZ(OM;(VZS(Q))/) < C||ZH\2/3/27.9,3/47£/2(QM),

and
IPF(z1) — PF(22) [l 2rr20) (0,mov0()) F [IPF(Z2) — PF(Z2) [ L2(0.00:v 22 ()

< C(H21HV3/2*€~3/4*€/2(Q00) + ”22”V3/2*€~3/4*€/2(Qw)) llz1 — 22”V3/2*€~3/4*€/2(Qm)7

for all z, z1, z, € V3/2-63/4-¢/2(Q,,). After that we study the mapping
W:zr—y,,
wherey; is the solution to the system

Py =AnPy+F(z) in (0,), Py(0) = yo,
(I =P)y = —(1 — P)DaRL*B;MPy in (0,0).

To show that the mappint is a contraction irD, (is Lo andn are suitably chosen), we prove the
following Lemma.
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Lemma 1. ([15,Lemmab.2]) For all yo € Vi/>4(Q) and allf € L2/ (1+26)(0, c0; VO(Q)) N L2(0, o;
(V?(Q))") the solution to the equation

y/ :AI'IY‘H» y(O) = Yo, (52)
obeys
||y||V3/2—£.3/4—£/2(Qw) S C1(|y0|vr:k/2—£(Q) + ||fHL2/<1+2€)(0,°0;V8(Q)) + ||fH|_2(0’°0;(V25(Q))/)) .
After that, Theorem 5 follows from a fixed point argument.

5.2 Second stabilization result

To obtain a feedback law providing an exponential statiliraof the Navier-Stokes, we are
going to use the linear feedback law determined thanks tausitiary problem. For that, we set

wt

y=e"y, 0=e""u with w > 0.

Py’ = APy+PF(y)+Bu,  Py(0) =Yy,

(I =P)y = (I = P)Dayu,
theny is the solution to the system

Py’ = APy +wy+e “F(§)+B0,  PY(0) =Yo,
(1 =P)§ = (I — P)Dayd.
SetA, = A+ wl, and letl, be the solution to the algebraic Riccati equation:
Me=T15>0, MuAy+ALM,—MuBBiMy—MeBaRyB;M, +1 = 0.

The existence of a unique solution to this equation may begak@s in section 4. Consider the
Navier-Stokes equations with the linear feedback law:

Py’ =An,Py+e F(9),  PJ(0)=yo,

(5.3)
(I =P)y = —(1 - P)DaR, "B MY,
where
An, = A+l —B;B;My—ByR ' BiM,,.
As previously, ify is a solution to (5.3), thep = e~ 'y is the solution of
Py’ = APy — B(B;MwPy — BaRy " BiluPy +F(y),  Py(0) =Yo, 54

(I =P)y = —(I — P)DaR, 'BiM,Py.

Theorem 6. For all 0 < & < 1/4, there existglp > 0 and a nondecreasing functia from R+
into itself, such that it € (0, up) and HyoH\/l/Z—s(Q) < no(u), the equation5.4) admits a unique
solution in the set

D, — {y € VI EHAE12(Q ) | €Oy yarz ez, < H}-
Moreovery belongs to G([0,); V1/2-¢(Q)), and it satisfies

[Y(©)lyaz-e() < Clw, ) €.
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6. Stabilization of the three dimensional Navier-Stokes agations

Throughout this section, we assume that 3, w belongs tov®(Q), andQ is of classCS.
Let us first explain why the feedback law determined in sedfigs not convenient to stabilize the
Navier-Stokes equations in 3 dimension.
In 3 dimension the mapping
z—F(2)

is locally Lispschitz fromv3/2-€3/4-¢/2(Q,,) into L?(0, ; (V/2+2¢(Q,))’). But we cannot prove
that the mapping

t
fH/ et-DAf(1)dr,
0

is continuous from_?(0,c0; (VY2+22(Q)Y') into V3/2-€3/4-¢/2(Q,,), and we cannot use a fixed
point argument as in 2 dimension. To deal with the nonlineem (y) in 3 dimension, we have
to look for solutions to the Linear-Quadratic problenM#/2&:3/4+¢/2(Q,,) for somee > 0 (or in
L2(0,00; V3/2+€(Q)) NL*(0,00; VY/2+£(Q))).

To obtain such a regularity result and to obtain a feedbagkstabilizing the Navier-Stokes
equation, an alternative way may be to choose the functldneﬂroblem(@?) so that the mapping

C (Myz . 0) 0
be a Lyapunov function of the closed loop systen¥ #>+¢(Q). This method has been successfully
applied in the case of an internal control [1]. Its extendimthe case of a boundary control (when
the normal component of the control is equal to zero, and viherontrol is applied everywhere
on the boundary’) has been studied very recently in [4]. The idea in [4] cdrsis choosing a
functional | coervive inL?(0,00;V3/2+¢(Q)) for somee > 0. ThelL?(0,00;V3/2+¢(Q))-regularity
combined with the state equation of the Linear-Quadratoblem is sufficient to deal with the
nonlinear ternF (y) in 3 dimension.

The price to pay is that the corresponding algebraic Riezaiation is only defined iB(An),
which is itself unknown sincél is not determined by an equation independer®D ).

Here we follow a different approach. We maodify the contrcﬂl}dem(@?) in two ways. We
modify both the cost function and the control operator. Toetiol operatoB is replaced bydB,
where the weight functiod € C([0,«)) satisfies

B(t) €[0,1] forallteR*,
6(0)=0 and O(t)=1 forallt>T,
with T > 0 is given fixed. The new state equation is
Py = APy +6Bu in (0,«), y(0)=yp, and (I—P)y= (I —P)Dau. (6.1)

To understand the role of the weight functién we observe that i € Vé/ZH(Q) and ifu e
VItE./24e/2(5 ) for somee’ > € > 0, then the solution to equation (6.1) belongg fn ([0, );
v3/2+e(Q)) nHIE/2(]0,00); VO(Q)). This regularity result is obtained because the trace of the
initial condition yg and the initial value of the boundary contr®l are both equal to zero, and
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consequently they satisfy a compatibility condition whigmnot be obtained without the presence
of 6.

In the cost function we replacf’ [ |Py|2 by [y Jo |(—Ao)~Y/?Py|?. More precisely we con-
sider the family of control problems

(2ty0) inf {1y u) | (y,u) satisfies(6.2), u € VO°(35) },
where 1 e 1 e 1 e
t, - A Y2py)2 L = 1/2 2_// 2
(Eyw=5 [ [1-roy¥2ryP+3 [ [IRPwul+5 [ [ wuP,
and
Py =APy+6Bu in (t,»), Py(t)=Yyo, and (I—-P)y= (I —P)Dau. (6.2)

Thus contrarily to what is done in [1] and in [4], where a notmosger than thé.2-norm is
used in the cost function, here we take a norm weaker thah%merm. The regularity result for
the optimal state is recovered by studying the optimalitstesy.

Theorem 7. For all yo € VY(Q) and all t € [0,»), problem (2 ¢y,) admits a unique solution
(Vi Uiy, )- There exist§1(t) € 2(V3(Q)) such that the optimal cost is given by

- 1
| €Yy Uiyo) = 5 (MEo.o

2 >vg(Q)'

Proof. The proof is completely analogous to the one in [15, Theorehh @ to the proof of

Theorem 2.

Lemma 2. (see[16]) For everyyp € V3(Q), the system

Py’ = APy — 62B;B® — 62B R, 'B;® in (),  y(t) =yo,
— =A'O+(~Ag) Py in(t,@), (o) =0,

®(t) = N(t)Py(t) forallte (t,»),

(I =P)y(t) = —(1 — P)Da6?BaR,"BiM(t)PY(t)  in (T, e0)

(6.3)

admits a unique solution inAt, o; V3(Q)) x V21(Qrw). This solution belongs togllt, «); VS(Q))
NVIY2(Qge) x (L2(E, 005 V3(Q)) NH¥2(t,0;VZ(Q))) and it satisfies:

¥ lly(Eeo):vac@)) T 1Y Iviazigr,) + P2 @ewvsi))rHezEevz (@) < ClYolvya) -
The pair(y, —6B;® — OR, 'B;®) is the solution of Zry,).

Corollary 2. (see[16]) If yp € V%/Z_S(Q) for some0 < € < 1/2, then the solutiorfy, ®) of system
(6.3) belongs toV3/2-8:3/4-8/2(Qr,) x (L2(t,00; VIY27€(Q)) NH7/47#/2(t,0;V2(Q))), and we
have:

Y llvarz-eara-erzqr,) + | Plz@evive-e (@)anms-s2gmvz(@)) < ClYolyyz-e g

1B P2 ava-e(r))nmzra-s2ovsrzry) < ClYolyaz-e g)-
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Ifyo € Vé/2+£(§2) for somed < £ < 1/2 and ift = 0, then the solutiorly, ®) of systent6.3)belongs

to V/3/2+8:3/4+8/2(Q,) x (L2(0,00; VIY2HE(Q)) NHT/4+€/2(0,00;V2(Q))), and we have:

[1Yllvar2sesareraq,) + 1Pl L2(0mvivse (@))an7ater2(0mnv2 (@) < C|y0|vﬁ/2+s(Q) )
and
1B Pl 20 v 26 (@) 24+ #2(0.00v2()) < ClYolyyzse g -

Due to this regularity result we are able to define a feedbaeknhich stabilizes the Navier-Stokes
equations (see [16]).
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