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Exponential stability of hyperbolic systems Farid Ammar Khodja

1. Introduction

This paper is devoted to spectral theory of one-dimensional hyperbolic systaorsialform

g(\tj) =M(x)Z (\Lj)JrA(x)(\Lj) R* x (0,1)

U(t,0) =BV(t,0), V(t,1)=CU(t,1) t>0 (1.1)

k(t’/)(o,x) _ (32)@0, x€ (0,1).

whereM andA aren x n matrices(n > 2) such that

M = diag(Az,...,Ap, H1,.., 1), p+1=n1<p<n-1

A= (ajk) 1<j,k<n

andU € RP.V € R'. We denote by, C constant matrices with appropriate size. (Similar hyper-
bolic systems witldynamic boundary conditiorere also dealt with by the authors B]). Some
physical examples are also given in the last section. We will present in the last section how the
stabilization of the Timoshenko beam system fails within our formalism; a more elementary appli-
cation to discrete kinetic models is also given.

The following "unperturbed” system proves useful:

(O) e (2) om () s

U(t,0) = BV(t,0) , V(t,1)=CU(t,1) t>0 (1.2)
(3)(0,@ - (iJ,j)(x), xe (0,1).
where
D = diag(ay1, -+, an) (1.3)

is the diagonal matrix composed by the diagonal entries of
Under the following assumptions

(H1) Al € CH[0,1]) andAx > 0>y in [0,1] fork=1,...,pandj=1,...1I;
(H2) A€ C([0,1],Mn(R));

(H3) If for k# mthere exists some € [0, 1] such thaf\(X1) = Am(X1) (OF hk(X1) = Pm(X1)) then
am=0in[0,1],
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F. Neves, S. Ribeiro and O. Lopes] howed that irL9 spaceq1 < q < «) the difference
between the semigroups generated by the sysi2rfjisand (L.2) is a compact operator from which
it follows, by standard arguments, that the two semigroups have the same essential spectrum and
consequently the same essential type (see for inst8héer [definitions of these notions). Owing
to the fact that the essential type far2) is easily computable, such a compactness result provides
some information on the time asymptotic behavior() of solutions of both systems. (Actually,
more generally hyperbolic systems widiinamic boundary conditiorese also considered iB]).

In this paper, we weaken Assumpti@3). Indeed, if we replacéH1) — (H3) by

(H4) Ak, 1; € C*([0,1]) andAx > 0> p;on[0,1] fork=1,...,pandj=1,...1;
(H5) A€ C»([0,1],Mp(R));

(H6) Fork # m, Ak — Am (Or ik — Um) has at most finitely many roots with finite order,
We get the following result:

Theorem 1. Let(H4) — (H5) — (H6) be satisfied. Then:

(i) The semigroups generated by the systerE) &nd (1.2) have the same essential type.

(i) Assume that, if for somle# m, Ax — Am (OF tk — bm) has roots¢y, - - -, xy of orderlq, -« -, Iy,
thenaym vanishes aky,---,xy at orderss > l;. Then the difference between the semigroups gen-
erated by the system2.E) and (1.2) is compact.

Remark 2. The smoothness assumptions(i#d) — (H5) are unnecessary when the eigenvalue
curvesAg (or ) do not interesect; we nedd® regularity only. Moreover, wheiAy — An, (Or

U — Mm) has a root at some order, then a stationnary phase argument used in our proof imposes
someC™ smoothness &, |; andAin the neighborhood of such roots where the integefepends

on the orders of the roots. However, for the simplicity of the statement, we a€Suregularity.

If instead of(H6) we assume:
(H7) There exisk # msuch thal\g — A, (or pk — Um) vanishes ora, b] C [0, 1],

then Theorent is no longer true and the above decomposition of the semigroup generated
by (2.5) is not relevant. More precisely, und@f7), instead oD, we introduce the matriP =
(dar)1<qr<n Where

agr(X) q=r

am(X) g=Kk,r =m.
amk(X) g=m,r =Kk,
0 otherwise

dgr(X) = (1.4)
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and deal with a new "unperturbed” system:

3(3) :M(x)a"x<3>+5(X)<\Lj> inR; < (0,1)

U(t,0) = BV(t,0) , V(t,1)=CU(t,1) t>0 (1.5)

U Uo
<V>(0,x) = <V0>(x) , xe (0,1).

We prove the following:

Theorem 3. Under(H4) — (H5) — (H7), the semigroups associated with%) et (1.2) have differ-
ent essential types.

Under (H4) — (H5) — (H7), the difference between the semigroups generate® 5y é#nd
(1.5) is compact.

Remark 4. TheorenB has been obtained recently (3] under the assumption thaa, b] = [0, 1]
by using tools similar to those used 5] [

Our proofs of Theorerid and Theorer® are new and rely on recent functional analytic tools,
in particular those given b, [9], [10] and [7]. Roughly speaking, instead of tligrect analysis
of the difference of the semigroups given by Neves, Ribeiro and L&)ews¢ provide aresolvent
approachconsisting in analysing the behavior of the difference of the resolvents of their generators
for large imaginary partof the spectral parameter. The mathematical analysis is performed in
setting and the obtained results extendfspaceg1 < q < «) by interpolation arguments. This
point of view provides us with aystematianalysis of the delicate issue of intersecting curves
eigenvalues.

2. Some applications
We give some applications of the previous theory to some examples of physical interest.

2.1 Boundary stabilization of the Timoshenko beam system.

The equations of motion of a Timoshenko beam are

o = (B(d +wx))x X
{ Yore = (80x)x — B(P + Wy) on(0,1) xR 2.1)

Here,t is the time variable and the space coordinate along the beam. The funatida the
transverse displacement of the beam dnid the rotation angle of a flament of the beam. The
coefficientsa, 3, yando are the mass per unit length, the polar moment of inertia of a cross section,
Young’s modulus of elasticity, the moment of inertia of a cross section and the shear modulus
repectively. We assume that:

a,B,y,8 € C1([0,1],(0,4)). (2.2)
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and the question is to know if the natural energy of this the beam which is

11
= 5ol w2y oo P +B| 0 +w|* +3] o [*} dx (2.3)
decays exponentially whenever we deal with the following boundary conditions:

w(0,t) = w(L,t) = $(0,t) = 0
VO(1)dx(1,t) = —d /Y(1)$(L,1)

whered > 0is a real number.

Note that this example has also been considered]iarid in 6] but the original choice here
is in the fact that dissipation for the system comes only from the last conditi¢h4n We will
see in the following developpements that exponential decay of the efiecgy be expected only
if the wave speeds are equal at least on a subintervall.

Introducing the Riemann invariants:

(2.4)

U1:§<wa+fwx+¢>
o = 5 (Vi + V3,
vlzé(fwt fwx+¢)
Vo = %(\[Vq)t )
transforms systen®(1) into:
Y; = MYx+AY in(0,1) x R™ (2.5)

whereM is the diagonadl x 4 matrix given by

M:diag<\/§,\/§,—\/§,—\/€> (2.6)

() +(8)
a | WO W) A

and

NI<<
/—\ NP/~ NIk
\_/

; / ; (2.7

S(V8) 8 (V)

1 /B y 1 /B

A A -0
The boundary condition®2(4) become:

ui+vy =0,x=0;1, t>0, (2.8)
U+v =0,x=0,t>0, (2.9)
(1+d)uz+(1—d)v2 = 0,x=1,t > 0. (2.10)
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)\l:\/Ea)\ZZ\/é’ ul:_\/E’ HZZ_\/E (211)

If we assuméH6), the reduced system is

We set

Y. = MY, +DY in(0,1) x R* (2.12)

with D = diag(A) = diag (A7, A%, 1y, 1) and a short computation leads to the two families of eigen-
values of this system associated with the boundary condit&as)(

1-d

-k In|gq| . km
p&le,F)ﬁ:??}ll%—i—lw,keZ. (2.13)
0 Xk 0% 0%

Thus the essential type s = 0 and the natural energy cannot decay exponentially.
If we assumé&H?7) with (a,b) = (0,1), this time, in the reduced system we have:

N—1 0 0
T N0 O

D= 2.14
0 0 N 1 ( )

0 0 -1 N

with A = Aj(= —), i = 1,2 andt = %\/g. The differential system:

pY = MYy + DY (2.15)
can be written:
du 0-1
=A—4N
puU ax +ANU+T1 (1 0 ) U
dv 0-1
V = —A— —ANV-— V
P dx (1 O)

The change of variables:

v;(lj)V

transforms the previous equations into:

~ .d0 .~ i 0~
pU_)\dX+)\U+T<O_i>U

~ \VA. i 0\
pV_—)\dX—)\V—T<0_i>V
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and the boundary condition2.0.() become:
U(0) = —V(0)

VD = - (—11++yv —11++VV> v

with y = % (we assumal # 1 but the casal = 1 could be treated in the same way). Some
computations lead to the eigenvalue equation:

4yeoP _ 2(14y)e?oP 41 =0, (2.16)
R
wherehg = 01%, which gives the two families of eigenvalues:

Inly| .k
1 —_—— E—

K P + )\O,k 7
In2 Kkt
2 Nz KNI

Pk = 2)\0+I)\0,k€Z.

Since actually systen®2(12) is, up to a change of variable, a diagonal system, it follows that (with

the same argument as 5]
_ max(—Inly|,—In2)

2\o

(2.17)

Thus:
We<0<=|y>1 (2.18)

and this condition is always satisfieddf> 0. So, again, the exponential stability occurs up to a
finite dimension space of initial data.

Note that this example has also been considereg]iarid in |6] but with more conditions in
(2.9).

2.2 Discrete kinetic models.

Consider a monokinetic equation in a slab with thickness

of  of Z1

o FH oW TGt = KOG ) T K Y, (2.19)

ot 0X 1

forany (x,u,t) € (0,1) x (—1,1) x (0,), wherep € (—1,1) is the cosine of the angle between the
velocity of particle and the axis of reference (orthogonal to the slab). This equation is supplemented
by a initial conditionf (x, 4, 0) and a boundary condition

£2(0,.) =Bo((0..)), fi(L,.)=By(f_(L.)) (2.20)
where
f_(0,.):pe (—-1,0) — f(O,p) (2.21)
f(0,.):pe (0,1) — f(O,p) (2.22)
f (1,.):pe(—1,0)— f(1,p) (2.23)
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f(1,.):ne(0,1) — (LW (2.24)

are related by boundary operat@&gsandB;. In neutron transport theoigx = 0 (k = 0,1), while
nonzero (Maxwell) boundary operators appear in the kinetic theory of gd§esare concerned
here with thediscrete(with respect to ther-variable) version of this model:

ofi ofi

S H, il Z ki j( i=-N,.,~1+1..N (2.25)

sz
where0 < 1 < [ < --- < Uy denote the positive angles apdy < - -+ < i1 < 0 denote the
negative angles; there are as much negative angles as positive angles The boundary condition
(2.20 is

U(0,t) =BV(0,t), V(t,1) =CU(1,t) (2.26)
where
f1(x,t)) fo1(x1))
U(xt) = : LV (xt) = : . (2.27)
fn(xt) fon(X 1)

and the matrixB (resp. C) is a discrete version of the operat®g (resp. B;). The hyperbolic
system we obtain is much simpler than that considered in this paper since the “velqgiiies’
—N,...,—1,+1,...N) are constant with respect to the space variable and then the phenomenon of
crossing curve eigenvalues does not occur. So, either ajlthee distinct, either some of them

are identical. In one or the other case, we can apply The&renTheoren8. For instance, in the

first situation (all the eigenvalues are distinct), the semigroup govergigg){(2.20) has the same
essential spectrum as the semigroup goverrm@gfand .20 where

ofi ofi .
a—t'+ua'+( () —kii (X)) fi(xt) =0, i=—N,..,—1,4+1,..N. (2.28)
This is a new spectral result in transport theory. |
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