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Controllability for Reaction-Diffusion systems Assia Benabdallah

1. Introduction

We consider a general reaction-diffusion system which arises in mathematical biology :

th = ALIJ+ fl(l*lJaW)7 in QT =Qx (07T )
W = AW + fo(P, W) +Xw0, in Qr
Y=w=0 onXZy=0Qx(0,T)
llJ(X,O):llJo’ W(X,O):Wo, X€Q

(1.1)
(1.2)

whereQ is a bounded domain @&"with smooth boundargQ, f; (i = 1,2) are smooth real func-
tions (let us sag? functions) andgis a control inL?(Qr). Letg* in L?(Qr) (with Qr = Qx]0,T|),
and(W5,w;) € L2(Q)2 . Suppose that there existé, w*) satisfying €.1) in C (], T] x L%(Q)) *with
(W(0),w(0)) = (W§,Wp). Therefore, by setting:

Y=0-

l.IJ*
—w

I
g

where((, W, 9) satisfies/f.1), one gets:

P = AP+ fr (P, W) — fr (Y7, w*) in Qr

W = Aw + (T, W) — fo(W*, W) +Xwd in Qr
W=w=0o0nZt

W(x,0) = Wo,W(X,0) =wp, Xx€ Q

whereg = g— g*. We write this last system in the following form:

P = A¢+a(¢aw)w+b(¢aW)W InQT

w = Aw +C(¢,W)w+d(w,w)w +Xwd mQT (13)
lIJ =w=0 OnZT
W(x,0) = Po,W(x,0) =Wp, X€Q (1.4)
where:
Z19f
a(y,w) = . ale(SllJJrlJJ*,SWJr\Ar*)dS
Z19f
bw) = S (Sh+ W sw+w)ds
Z19¢
c(P,w) = o Tj(%+w*,sw+W)dg
VA 1
d (Y,w) = (?)h(ap+¢*,sw+w*)ds
0 ow

Our aim is, for any(y, Wo) belonging to a suitable space, to find a conga L?(Qr) such
that the associated solution df.®)-(1.2) satisfies

W(T) = w(T) = 0onQ
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This is thenull-controllability or thecontrollability to the trajectorieproperty.

For reaction-diffusion systems, this question has been considered in Anita-Bhwith[par-
ticular nonlinearitiesf;. The authors proved a local exact controllability witto localized (in
space) control functions (one for each equation) Another connected question is tackled by
Barbu-Wang§]. In their paper, these last authors prove, by way of direct techniques, the stabi-
lization of system1.1). As they pointed out, local null-controllability implies (local) stabilization
but the first property is still an open problem. Our work is just concerned by this problem (null-
controllability). We prove in this paper that, under an assumption (which does not seem very
restrictive (see4.1) below in Theoreny), this property holds for systeni.d). Our approach
is based on earlier works on the local and global null-controllability of phase-field systems and
abstract parabolic-like systems (s@g [3]).

This contribution is in keeping with the idea of controlling or stabilizing systems using the
least control forces possible: works in this direction dealing with various systems governed by
partial differential equations or equations in an abstract framework can be foutjd[iA]|

The paper is organized as follows: We set and prove the local null-controllability of system
(1.2) in the fourth section. Before this, we first prove in Section 2 a crucial observability estimate
for the linearized problem(see Theorérhelow). In the third section, we use this estimate to prove
the null-controllability of a linearized system derived froing).

2. Observability estimate
We consider in this section the problem:

W = Au+au+bv inQr

Vi = AV +cu+dv +X,g in Qr (2.1)

E(;, \(l))_:ouc::v?;, 0) =Vvp, X€Q (2:2)
and its adjoint problem:

—¢r = Ap+ad +cw in Qr 2.3)

—W = Aw +b¢ +dw inQr

¢=w=00nZt (2.4)

¢(X7T) = ¢07W(XaT) =Wp, X¢& Q

wherea,b,c,d € L*(Qr)
Following [9], let us introduce some notations. Lgte w be a subdomain ab and letf be a
C?(Q) function such that

min{]DB(x)\, xem} >0 and % <0 onaQ, (2.5)

wheren denotes the outward unit normald®. Moreover, we can always assume tpaatisfies

min{B(X). x€ @) 2 max( 3 [Bll- o) In3) ) 26)
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Finally, we introduce the following functions with parametgrs 0 andt > O:

p(t,x) : = PXYT 1), (t,x) €Qr, (2.7)
a(t,x) : =ted Bl — dBXyT —t),  (t,x) € Qr. (2.8)

Note in particular thap > =.
Then the following global Carleman estimate hold®, (Theorem 7.1, p.288]): There exist
Ao > 0, To > 0 and a positive constafit such that/A > Ag, V1 > 19 andVs > —3 the inequality
£ 1 2, 12,2 2. 2,02 V444 251, 2
()\|zt| +X\sz| +AT?p? |0z +A*p 22> p*>le~#dxdt
Qr
z Z+Z

<C (T |z + Az p%e 2 dxdt+ A
Qr

zzp25+3e2°‘dxdt) , (2.9)
0 o

holds for any functiorz satisfying homogeneous Dirichlet condition and such that the right-hand-
side of 2.9) is finite. Moreover, the constan@andA, depend only o2 andw/. The constantg
is of the form

To = Co(Q, )(T +T2).

The explicit dependence in time of the constants is not give8]infe refer to [LO] where the
above formula forg is obtained.

In the sequel, the symb@ will stand for various constants independenffaéinda, b, c, d.

Let us introduce the following notation: for givénandt, we setd = 1p and consider the
functional:

YA
1(s,2) = o (i |z|? + % ]Az]2+)\62\Dz]2+)\46422> 5% le Xdxdt

On the other hand, we set:
1/2
2 2 2 2
Ha,b,c,dez(Ha\lm+Hbllm+HCHm+Hde) .
Our crucial result is the following:

Theorem 1. LetAg > 1, C being the constant given i2.€). Assume moreover that there exists a
constantyy > 0 and a domairwy, such that

W € W (2.10)
bl > bo W % (0,To) (2.11)

for someTy > 0. ThenvA > Ao, VT > 11 = TTZ (%)1/3||a, b, c,dHfo/3 , Vs> -3, vr € 0,2) there
exists a constar® = C; 1 such that:
z.2
1(—3/2,0)+1(—3/2,w) <C e "w?dxdt, (2.12)

0 w
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ProoF We will only sketch it. In a first step, we prove the following estimate usimh§)(

YA > Ao, VT > 11 = I (%) 7%||a b, c,d[[Z% andvs > —3, the solution($, w) of (2.3)-(2.9):

3 3 Zre
(=2,0)+1(—=,w) <C\ (02 +w?) e *dxdt (2.13)
2 2 0 W

forall W cc wy C w.
This estimate already implies the null-controllability 8t1) by two control forces (i. e. in the
case where a second forggf occurs in the first eoRuagon c2(2)).
So, in a second step, we get rid of the tergh , d%e 2dxdt in dhe right-hand-side of
&2.%&9. Actually, we introduce a suitable functional in order to estimate , $2 e 2*dxdt by
0 € "w2dxdtand this will be possible for anye [0,2). This is the main contribution of this
work.

3. Null controllability of (2.1)

Fore > 0andr € (0,2), we define:
z
@ =- €° 2olxolt+i\|(u v)(T)|12
€ g - 2 QT g 28 9 LZ(Q)?

whereg € L?(Qr) and(u,V) is the associated solution @.0) with givenXo = (uo, Vo) € H3 (Q) x
H3(Q). Introduce also the dual functional (s@}[

Z+2 z

1 €
e " wPdxdt+ - [YollP2 i)+ Y(0).XodX,
® 2 Q

J(Yo) = 3,

whereY = (¢,w) is the solution of the backward linear systeth3 with dataYo = (¢po,Wo) €
L2(Q) x L?(Q).
By classical arguments, the minimization problems

min Je(g) and min J; (Yo),
g Yo

have both exactly one solutiag andYy: respectively. Moreover by the maximum principle (or see
for instance/8)) :

1
gE — Xwe_raWSOnQ]'; YOS = —E(US’Vs)(T)OrQ (31)

where(Ug, Ve) (resp. (¢e,We)) is the solution of2.1) (resp. R.3)) associated witlge (resp. Yoe).
SinceJ; (Yoe) < 0, we get

1212

B 1 2
5, LC rawZdxdt + EH(U&VS)(T)HLZ(Q)

< [[(9e,We) (0) [l 2(q) - [IXoll L2(q) - (3.2)

To obtain an uniform estimate, we will need the following results:
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Lemma 2. With the hypotheses of Theordhfor r € (0,2), any solution pair of2.3) satisfies the
estimate Z.2

16 WOl <Cr e widxdt (33)

with
1
Cr =exp(C (141 + 1+ @bed )T +I@bed)i) )

1/2
wherel|(a,b,c,d)]|,, = (Jlall2 + bl/2 + )3 + 1ll2)

PrRoOF The proof of this lemma is by now classical and very similar to the equivalent lemma
in [2]: it is essentially based o2(12). |

ForN > 1, letgy such that

N+ 2 N+2 .
—_— 2 f N>
5 SN<2i >3,
Ov € (2,+0) if N=1,2 (3.4)

2
Lemma 3. With the hypotheses of Lem2gor anyXo = (uo, Vo) € (H&(Q) AW o) (Q)> :

2
there existg(u,v),g) € (LZ(O,T; HE(Q)) quzN’l(QT)) x LI (Qr.) satisfying[2.1) and:
(u,Vv)(T) =00nQ
IXo8llfan(or) < Cr [1%llF2(0

whereCr is defined in lemma.

PrRoOF From 3.2) and B.3), we get for alle > 0 :
1212

B 1
5o €t o (U ve) (T o) < Cr %ol

We should obtain from this last estimate a control#(Qr) just by passing to the limit is.
But we will prove that our control is ib™ (Qr) because we will need this property in the following
section. So let us introdudg = e "w. It satisfies by/2.3):

(Ce)i +DL =T in(0,T) xQ=Qr
(=0 on(0,T) x0Q =t
ZS(T) =0 in Q,
with
fo= 210, (e D) + (8 (67%) + (¢7%), e ™) we—be 6,

By parabolic regularity, we have:

HZEHWZM(QT) < CH fSHLz(QT)
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On the other hand, we get easily, usi2dl) in Theoremnil and assuming that> 1
Z+2Z
<Cr e "w2dxdt
0

w

HZS H\?sz‘l(QT)

Now, by the embeddinwzz’l(QT) — LIN(Qy) (see for instancelll, Lemma 3.2, p. 80]):

Z .2
HZSHEQN(QT)SCT . wefmwgdxdt

Going back to our control we get

HQEHEQ = ”Xw(s”ﬁq
N = X " N(Qr)
<cC e "w2dxdt

0 w

< Cr ol (35)

From 3.5 and [11, Theorem 10.4, p. 621], it follows, at least for a subsequence, that for
e—0:

g — g weakly in N (Qr)
(Ue,Ve) = (u,v) weaklyin (0, T; Hg(Q)) "W (Qr),

and((u,v),g) satisfy 2.1) with (u,v)(T) = 0 and||Xedl|fa(gy) < Cr [1X0lIF2(q)- M

4. Local null controllability of (11.1)

Our main result is the following:

Theorem 4. Local controllability to the trajectoriesAssume thaf; € C2(R2,R) for i = 1,2, and
letT >0, 1 <N < 6. Assume also that there exists a global trajectapy, w*,g*) of (1.1) such
that

ofy

m(LIJ*,W*) >p>0 ae onowyx(0,To).

for somed < To < T anduwy, € w. Thenthere i® > 0such that iy, wo € H}(Q) AW ag) o (Q)
(o is defined in8.4)) with [|(Wo ,Wo ) || =(q) < P, one canfind) € LW(Qr) such that there exists

(Wg,Wg) solution of @.3) with g ,wy € quh’,l(QT) and satisfying:

Remark 5. It should be said thaty, and Ty are arbitrary in the assumptior(1) and, so, it seems
not to be a real restriction on the trajectofy*, w*, g*) of (1.1). For example, this hypothesis is
satisfied by steady-state solutions/bilf if the nonlinearitiesf; and f, are sufficiently smooth.
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PROOF ForR> 0, set
Kr = {(lIJ,W) € (L™(Qr) %5 (W, W)l < R}

and consider the probler.(l) with a fixed (¢,w) € Kg in a,b,c andd. Sincef; € C}(R?,R) and
thanks tol4.1), b will satisfy the assumptions of Theorétrfor a sufficiently smalR > 0.

For each(y,w) € Kg, thanks to/4.1), we apply Lemmé and consider the sgt(y,w) C
L2(Qr) of all the solutionsug, vy € L2(0, T;HE(Q)) NWe' (Qr) associated with any contrgle
L9 (Qr) such that(ug,vg)(T) =0 a.e.Q andHXngfqm(QT) <Cr HXOHEz(Q). The setr (Y, w) is
a nonempty closed convex subsetl8{Qr). On the other hand; (KR) is relatively compact in
L?(Qr) and exactly as irg], f is semicontinuous usind.l, Theorem 10.4]. To prove that has
a fixed point (clearly, a fixed point gf is a solution of[L.3)), it remains to show that there exists
R > 0 such thatr (Kr) C Kg.

To do this, we first prove that:

(g, V) 1= ) < Cr %I - (4.1)

Exactly as in/2], we get:
— 0241
[1(Ug, Vg) (1) | () SC(HXOHLW(Q)JFT N[ X Lon )
Z t
+ <1+H(a7bvcvd)”L°°(QT)) 0 ”(UgvVg)g(T)HLw(Q)dT>

and from Gronwall’s inequality:

1+|(ab,cd

c o T _Nt2q
0 ¥ g < O )T (130l q) + T 5 Xulion ) - (42

and @.1) follows from (4.2) and Lemmé8.
The local controllability follows from4.1) by taking the initial data sufficiently small
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