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1. Introduction

Variable structure control methods and in particular sliding mode controls, are by now recog-
nised as classical tools for the regulation of systems governed by ordinary differential equations in
a finite dimensional setting. For an overview of the finite-dimensional theory see [17]. While being
easy to design, they possess attractive properties of robustness and insensitivity with respect to dis-
turbances and unmodeled dynamics. These characteristics are all the more important when dealing
with infinite-dimensional systems. Recent research has been devoted to the extension of sliding
mode control and therefore the use of discontinuous feedback laws, to the infinite-dimensional set-
ting. The early works [10, 11, 13] were confined to some special classes of systems, but at present
both theory and application of sliding mode control have been extended to a rather general setting
[14, 12, 15]. In particular in [14] the key concept of equivalent control is extended to evolution
equations governed by unbounded linear operators that generate C0-semigroups.

As sliding motions are obtained by applying feedback laws which are discontinuous on the
sliding surface, the question of how to define what is the meaning of solution for the closed loop
is a crucial point. A generalised solution concept has been proposed in [6, 5] and a relationship
between the equivalent control method and generalised solutions of infinite-dimensional systems
with discontinuous right-hand side has been established, under some regularity assumptions. In
Section 2 these results are extended to a more general setting by requiring less stringent hypotheses
on the interaction between the evolution operator and the sliding surface. This allows for more flex-
ibility in the construction of the sliding manifold and this is of primary importance for application
purposes.

All the results in the above cited literature only take into consideration distributed control
systems, i.e. they deal with bounded input operators. In Section 3 a variational approach in the
direction of [19] is proposed in order to show the existence of sliding modes for a class of parabolic
evolution equations with Neumann boundary control. The main assumptions made on the operator
governing the evolution, are weak continuity and coerciveness, so that both linear and non-linear
operators may fall into this setting. Then a Faedo-Galerkin method is used to construct a sequence
of finite-dimensional approximations of the given problem. The main result then states that if for
each approximation a control law is chosen to constrain the evolution in a boundary layer of a
given sliding manifold, then, under some growth assumption on the norm of these controls, a limit
motion exists, which satisfies the sliding condition.

2. Discontinuous distributed control for linear systems

In what follows we will be concerned with linear controlled differential equations of the form
{

ẋ(t) = Ax(t)+Bu(x(t))
x(0) = x0,

(2.1)

where x is the state variable and u is the control variable. The following conditions are assumed to
hold:

Hypothesis 2.1.
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(i) A : D(A) ⊂ X → X is a linear (possibly unbounded) operator, which is the infinitesimal
generator of a C0-semigroup K(t), t ≥ 0, on the reflexive Banach space X .

(ii) U is a Banach space and B : U → X is a continuous linear operator.

(iii) u : D(u) ⊂ X →U is a densely defined function that satisfies the growth condition

‖u(x)‖ ≤ M‖x‖+N, ∀x ∈ D(u) (2.2)

for some positive constants M and N.

2.1 Generalized solutions and viability

We now summarize some results regarding the definition of generalized solution introduced in [6]
for discontinuous autonomous semilinear differential equations in Banach spaces.

In our framework, let us define the set-valued map F : X → 2X by

F(x) =
⋂

ε>0

coBu(B(x,ε)∩D(u)), x ∈ X , (2.3)

where B(x,r) is the closed ball of center x and radius r. It is not difficult to prove that this is a
well-defined closed and convex valued mapping which is strongly-weakly upper semicontinuous,
i.e. for all x ∈ X and any neighbourhood V of F(x) in the weak topology of X , there exists a strong
neighbourhood W of x such that F(y) ⊂ V for any y ∈ W .We use now this set-valued function to
generalize the concept of solution.

We will call generalized solution of the differential equation
{

ẋ(t) = Ax(t)+u(x(t))
x(0) = x0

(2.4)

a mild solution of the differential inclusion
{

ẋ(t)−Ax(t) ∈ F(x(t))
x(0) = x0.

(2.5)

A continuous function x : [0,T ]→ X is called a mild solution of (2.5) if there exists g ∈ L1(0,T ;X)

with g(s) ∈ F(x(s)) for almost all s ∈ [0,T ] such that

x(t) = K(t)x0 +
∫ t

0
K(t − s)g(s)ds, t ∈ [0,T ]

(see i.e. [18, 2] and references therein for a discussion about mild solutions and existence theo-
rems).

In what follows, we will be particularly interested in the following class of solutions: if S is a
subset of X and x0 ∈ S a mild solution of inclusion (2.5) that satisfies x(t) ∈ S for all t > 0 is called
viable on S. S is a viable domain for (2.5) if for any x0 ∈ S there exists a viable solution of the
differential inclusion starting from x0. A generalized viable solution of (2.4) is a viable solution of
(2.5).

The results by Cârjă and Vrabie in [2, 3] can be applied to our differential inclusion, so that
we have necessary and sufficient conditions for the existence of viable generalized solutions.
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2.2 Sliding modes: equivalent control and generalized solutions

From now on we restrict our attention to a particular class of functions u.

Hypothesis 2.2. Let Y be a Banach space, C : X → Y a continuous linear operator, C 6= 0 and
D(u) = XrS, S = kerC.

This way S is a proper linear subspace of X , therefore has void interior so that D(u) is dense. A
sliding mode is attained when, upon reaching the surface S, the state is henceforth constrained to
remain (slide) on it. Note that the surface S is not given by the problem, but is one of the control
tools. The operator C has to be chosen in such a way that, once the evolution is constrained on the
sliding surface, the control goal is fulfilled.

In the finite dimensional setting a key concept is that of equivalent control. When it exists, it
is defined as the control for which the equation Cẋ = 0 is satisfied. Because of the unboundedness
of operator A, we have to impose the following conditions to be able to give an extended definition
for the infinite dimensional setting.

Hypothesis 2.3. S∩D(A) is dense in S in the topology inherited by X ;

Hypothesis 2.4. the operator CB : U →CB(U) ⊂ Y is continuously invertible and X = S⊕B(U).
The operators Q = B(CB)−1C and P = I−Q will thus be the projections on B(U) along S and vice
versa respectively.

We now define the equivalent control ueq as

ueq(x) := (CB)−1CAx, ∀x ∈ S∩D(A). (2.6)

The projected equation we get substituting ueq in (2.1) is

{

ẋ = (A−QA)x
x(0) = x0 ∈ S.

(2.7)

Proposition 2.1. Let Hypotheses 2.1, 2.2 and 2.3-2.4 hold. Moreover assume that QA is a pertur-
bation of Miyadera-Voigt type satisfying the following condition: there exist t0 > 0 and q ∈ [0,1)

such that
∫ t0

0
‖QAK(s)x‖ds ≤ q‖x‖, for all x ∈ D(A). (2.8)

Then the operator (A − QA) is the generator of a C0-semigroup on X and its restriction on S
Ã : S∩D(A) → S is the generator of a C0-semigroup K̃(t), t ≥ 0 on S.

PROOF. Condition (2.8) assures that A−QA generates a C0-semigroup H(t), t ≥ 0 on X by the
perturbation theorem of Miyadera and Voigt (for a proof see for example [4], Section III.3.c). It is
easy to prove that S is H(t)-invariant, so that the restriction K̃(t) of H(t) on S is a semigroup on S
generated by Ã. The invariance of H(·) is equivalent to this property: there exists ω ∈ IR such that
for any λ > ω one has R(λ ;A−QA)S ⊂ S ([16] Theorem 5.1 p. 121). If y = R(λ ;A−QA)x for
some x ∈ S, then λy−Ay+QAy = x. Applying C we get λCy = 0, therefore y ∈ S if λ 6= 0 and the
proof is complete. �
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We will now show that, under the same set of hypotheses due for the definition of the extended
equivalent control, we can say that if there exists a generalized solution viable on S of (2.1), then it
is unique and it is consistent with our extended equivalent control method.

Lemma 2.1 (Corollary 3.16 p. 199 in [4]) Let A generate the C0-semigroup K(t), t ≥ 0 on X and
Q be a continuous linear operator such that QA satisfies condition (2.8) for some t0 > 0 and q ∈
[0,1). Then the semigroup K̃(t), t ≥ 0 generated by A−QA satisfies

K̃(t)x = K(t)x+
∫ t

0
K(t − s)QAK̃(s)xds (2.9)

∫ t0

0
‖QAK̃(s)x‖ds ≤ q

1−q
‖x‖, (2.10)

for all x ∈ D(A), and any t ≥ 0.

Theorem 2.1. Suppose X is a reflexive Banach space and f : [0,T ] → X is in L1(0,T ;X). Then
there exists a unique function x : [0,T ] → X which is weakly continuous and such that for each
y ∈ D(A∗) one has

〈x(t),y〉 = 〈x0,y〉+
∫ t

0
〈x(s),A∗y〉ds+

∫ t

0
〈 f (s),y〉ds, 0 ≤ t ≤ T (2.11)

and this function is given by

x(t) = K(t)x0 +
∫ t

0
K(t − s) f (s)ds.

PROOF. See Theorem 4.8.3 and Corollary 4.8.1 in [1], p. 204-205. �

Theorem 2.2. Let the hypotheses in Proposition 2.1 be verified. Let x ∈ S and z(t) = K̃(t)x for
t ≥ 0 be the mild solution of ż = Ãz, z(0) = x. Then there exist f ∈ L1(0,T ;X) such that z is a mild
solution of ż = Az+ f , z(0) = x.

PROOF. By Hypothesis 2.3 there exist a sequence {xn} in D(A)∩ S such that xn → x. Setting
zn(t) = K̃(t)xn, by (2.9) and (2.11) one has

〈zn(t),y〉 = 〈xn,y〉+
∫ t

0
〈zn(s),A

∗y〉ds−
∫ t

0
〈QAzn(s),y〉ds,

for all t ≥ 0 and y ∈ D(A∗). As K̃(t), t ≥ 0 is a C0-semigroup it follows that ‖zn(t)− z(t)‖ → 0
uniformly on compact subsets of [0,+∞), therefore

lim
n→+∞

∫ t

0
〈QAzn(s),y〉ds = −〈z(t),y〉+ 〈x,y〉+

∫ t

0
〈z(s),A∗y〉ds. (2.12)

For any t ≥ 0 and any x the vector
∫ t

0 K̃(s)xds is in D(Ã) ⊂ D(A) and K̃(t)x− x = Ã
∫ t

0 K̃(s)xds,
thus

∫ t

0
〈z(s),A∗y〉ds = 〈(Ã+QA)

∫ t

0
z(s)ds,y〉 = 〈z(t),y〉−〈x,y〉+ 〈QA

∫ t

0
z(s)ds,y〉.
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Combining the above results, by the density of D(A∗) it follows that

∫ t

0
QAzn(s)ds ⇀ QA

∫ t

0
z(s)ds, for all t ≥ 0. (2.13)

Note that this just depends on the fact that Ã is a generator and a perturbation of A. Condition
(2.10) will now be exploited to show that the above convergence holds also in the abstract Sobolev
space W 1,1(0,T ;X), thus proving the thesis. To simplify notations let fn(t) =

∫ t
0 QAzn(s)ds and

f (t) = QA
∫ t

0 z(s)ds for t ≥ 0. Obviously fn ∈ AC(0,T ;X) for any n and T > 0 by the absolute
continuity of the Bochner integral. Moreover by (2.10), for T ≤ t0 and any n,m

‖ f ′n − f ′m‖L1(0,T ;X)
=

∫ T

0
‖QAK̃(s)(xn − xm)‖ds ≤ q

1−q
‖xn − xm‖.

Therefore { f ′n} is a Cauchy sequence in L1(0,T ;X) and since this space is complete, there exists
h ∈ L1(0,T ;X) such that f ′n → h in L1(0,T ;X). Using the same arguments it is easy to see that { fn}
is convergent in L1(0,T ;X) and by (2.13) the limit has to be f . The only thing to prove now is that
in fact f is absolutely continuous and h = f ′ almost everywhere. This can be done by a standard
argument involving derivatives in the distribution sense, applied to the abstract setting. In fact let
D ′(0,T ;X) be the space of X-valued distributions on (0,T ), i.e. D ′(0,T ;X) = L (D(0,T ),X).
The derivative of a distribution in D ′(0,T ;X) is defined in the usual way and for f ∈1 (0,T ;X),
ϕ ∈ D(0,T ) it gives

(

d
dt

f

)

(ϕ) := − f (ϕ ′) := −
∫ T

0
f (s)ϕ ′(s)ds.

Therefore for any ϕ ∈ D(0,T )

−
∫ T

0
f (s)ϕ ′(s)ds = lim−

∫ T

0
fn(s)ϕ ′(s)ds = lim

∫ T

0
f ′n(s)ϕ(s)ds =

∫ T

0
h(s)ϕ(s)ds,

that is f ′ = h in L1(0,T ;X).

From (2.12) it then follows that

〈z(t),y〉 = 〈x,y〉+
∫ t

0
〈z(s),A∗y〉ds−

∫ t

0
〈h(s),y〉ds,

where h ∈ L1(0,T ;X)

h(s) =
d
ds

QA
∫ s

0
z(r)dr, a. e. s ∈ [0,T ]

and the thesis follows from Theorem 2.1.

�

Remark 2.1. Similar results have been previously proved, under stronger hypotheses. In [6] the
operator A was assumed to generate a compact semigroup, while in [5] the requirement was the
extendability on S of the operator QA. Suppose that U is finite-dimensional, or for simplicity that
the control is scalar. Then Cx = 〈γ,x〉 for some γ ∈ X ∗ and QA admits an extension iff γ ∈ D(A∗),
while this condition is not required for (2.8) to be verified.
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3. Discontinuous Neumann boundary control

In Section 2 we considered linear systems of the form (2.1) and we assumed in Hypothesis 2.1-(ii)
that the control is distributed. Now we consider a class of parabolic partial differential equations
(possibly non-linear) with controllers acting on the boundary. In particular we will study the case
of Neumann boundary conditions and finite dimensional control space. Also, we suppose that a
manifold S is given, on which we want to restrict the motion of our system. We analyse the problem
of the existence of an admissible control law for which this ideal sliding motion is possible.

3.1 Variational formulation

The setting of the abstract problem follows [7, 8, 9]: let V be a separable, reflexive Banach
space, H be a Hilbert space, V ⊂ H with continuous injection. The space H is identified with its
dual, while we denote by V ′ the dual space of V , so that we have

V ⊂ H ⊂V ′.

For u1, u2 ∈ H the scalar product in H will be denoted by (u1,u2) and the derived norm by |ui|. We
will denote by ‖ · ‖ the norm in V and by ‖ · ‖∗ that in V ′. The dual pairing between the two spaces
will be written as 〈·, ·〉. Also, we will assume that on V it is defined a semi-norm [·] such that

[v]+λ |v| ≥ β‖v‖, ∀v ∈V, for some λ ,β > 0. (3.1)

It is assumed that all the above (infinite-dimensional) spaces are real vector spaces; results can be
extended to the complex case with the necessary modifications. For any T > 0 we can define the
following spaces of vector-valued functions:

L2(0,T ;V ) = { f : [0,T ] →V : ‖ f‖2
2,V :=

∫ T

0
‖ f (t)‖2dt < +∞}

L∞(0,T ;H) = { f : [0,T ] → H : ‖ f‖2
∞,H := sup

t∈[0,T ]

| f (t)| < +∞}.

The space L2(0,T ;V ′) can be defined analogously. Also, it is possible to define on these spaces a
concept of derivative, in a distributional sense (see i. e. [8] Chapter III). The following result [9]
will be useful in the sequel.

Theorem 3.1. Let

W (0,T ) =

{

f ∈ L2(0,T ;V ) :
d f
dt

∈ L2(0,T ;V ′)

}

.

All functions in W (0,T ) are, after eventual modification on a null measure set, continuous from
[0,T ] in H, i.e. W (0,T ) ⊂C0(0,T ;H).

Hypothesis 3.1. For t ∈ (0,T ) let A(t) : V → V ′ be an operator satisfying the following assump-
tions:

• for all v,w ∈V the map
t 7→ 〈A(t)v,w〉 is measurable; (3.2)
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• for all t and any u,v,ω ∈V the map

α 7→ 〈A(t)(u+αv),w〉 is continuous; (3.3)

• there exist constants c1 > 0, c2 ≥ 0 such that

‖A(t)v‖∗ ≤ c1‖v‖+ c2, ∀v ∈V ; (3.4)

• there exist constants α > 0 and ν ∈ IR such that

〈A(t)v,v〉 ≥ α[v]2 +ν |v|2∀v ∈V. (3.5)

• A(·) is 2-weakly continuous, i.e.

vk → v weakly in W (0,T ) =⇒ A(·)vk(·) → A(·)v(·) weakly in L2(0,T ;V ′). (3.6)

Let U ⊂ IRm be closed and convex and let f : [0,T ]×U → V ′ be measurable in t ∈ [0,T ] for all
u ∈ U and linear in u for all t. Since it will always be understood that admissible control laws u
take values in U , we will write u ∈ L2(0,T ) instead of L2(0,T ;U) and denote by ‖u‖2 the usual
L2-norm of the function u.

We are now ready to write the abstract evolution equation we are going to study. The evolution
of the system will be given by a vector-valued function y∈W (0,T ) satisfying the following abstract
Cauchy problem

{

dy
dt +A(t)y(t) = f (t,u(t)) a.e. t
y(0) = y0,

(3.7)

with u∈ L2(0,T ) and for some y0 ∈H (by Theorem 3.1 this makes sense). The differential equation
above as to be understood as an equality in the dual space V ′, i.e. setting

a(t;v,w) = 〈A(t)v,w〉, t > 0, v,w,∈V (3.8)

and in view of Theorem 3.1, the differential problem (3.7) is equivalent to the following variational
formulation

{

d
dt (y(t),v)+a(t;y(t),v) = 〈 f (t,u(t)),v〉 ∀v ∈V,

y(0) = y0
(3.9)

Existence and uniqueness results of the solution of such equations, under our assumptions, can be
found in [7] under monotonicity assumptions and in [8, 9] for the linear case.

Assume we are working in the framework set up in this section. Thanks to separability, there
exists a countable basis for V , so that it is possible to define a family {Vk}k∈IN of finite dimensional
subspaces of V

Vk = span {v1,k, . . . ,vNk,k
}

such that

Vk ⊂Vk+1,
⋃

k∈IN

Vk = V.
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Then it is possible to define approximate solutions of (3.9) by projecting on the subspaces Vk, using
the standard Faedo-Galerkin method. We thus define the following family of variational problems:
find yk : [0,T ] →Vk such that

{

d
dt (yk(t),v)+a(t;yk(t),v) = 〈 f (t,uk(t)),v〉 ∀v ∈Vk,

yk(0) = y0,k
(3.10)

with y0,k ∈Vk for all k and a sequence {uk} in L2(0,T ).

We now prove a convergence result for the approximations yk, under some conditions on the
controls sequence {uk}.

Theorem 3.2. Let the assumptions in Section 3 be satisfied and {uk} be a sequence in L2(0,T ).
Let yk be the solution of (3.10) and suppose that y0,k → y0 in H for k → +∞. Suppose moreover
that the following condition on the growth of the control norms is satisfied

‖uk‖2
L2(0,t) ≤ M

∫ t

0
|yk(s)|2 ds+N, t ≤ T (3.11)

for some non-negative constants M and N and that there exist a constant C > 0 such that for any
u ∈ L2(0,T )

∫ T

0
‖ f (t,u(t))‖2

∗ dt ≤C‖u‖2
2. (3.12)

Then there exist a control law u∗ ∈ L2(0,T ) and a function y∗ ∈W (0,T ) verifying (3.9), such that,
for some subsequence,

yk → y∗ weakly in W (0,T )

yk → y∗ weakly* in L∞(0,T ;H)

uk → u∗ weakly in L2(0,T ).

PROOF. Writing (3.10) for v = yk(t) we get

(ẏk(t),yk(t))+a(t;yk(t),yk(t)) = 〈 f (t,uk(t)),yk(t)〉.

As the first term on the left is in fact the time derivative of |yk(t)|2/2, integrating the above identity
we have

1
2
|yk(t)|2 +

∫ t

0
a(t;yk(s),yk(s))ds =

1
2
|yk(0)|2 +

∫ t

0
〈 f (t,uk(s)),yk(s)〉ds.

By (3.5), (3.1) and (3.12) we obtain the following inequality

1
2
|yk(t)|2 +α

∫ t

0
[yk(s)]

2ds ≤ 1
2
|yk(0)|2 −ν

∫ t

0
|yk(s)|2ds

+ c‖uk‖2

(

∫ t

0
|yk(s)|2 ds+

∫ t

0
[yk(s)]

2 ds

)1/2
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for some constant c > 0. Consider now for x ≥ 0 the function h(x) = (αx)/2− c
√

x. It is easy to
show that it has minimum for x = (c/α)2, therefore c

√
x ≤ (αx+ c2/α)/2, thus

1
2
|yk(t)|2 +

α
2

∫ t

0
[yk(s)]

2ds ≤ 1
2
|yk(0)|2 +

(α
2

+ |v|
)

∫ t

0
|yk(s)|2ds+

c2

2α
‖uk‖2

2.

Now, since by hypothesis |y0,k−y0| tends to zero, the term |yk(0)|2 is bounded. Moreover by (3.11)

|yk(t)|2 +α
∫ t

0
[yk(s)]

2ds ≤ c1 + c2

∫ t

0
|yk(s)|2 ds (3.13)

for some constants c1,c2 > 0. Since α > 0 we get

|yk(t)|2 ≤ c1 + c2

∫ t

0
|yk(s)|2 ds

Therefore, by Gronwall’s lemma we obtain for some constant K > 0

‖yk‖L∞(0,T ;H) = sup
t∈[0,T ]

|yk(t)| ≤ K (3.14)

therefore from (3.13) we also have
∫ T

0
[yk(s)]

2 ds ≤ const

and lastly, using (3.1) and (3.4)

‖yk‖L2(0,T ;V )
=

(

∫ T

0
‖yk(s)‖2 ds

)

≤ const,

∫ T

0
‖A(t)yk(t)‖∗ dt ≤ const.

Since spheres are weakly compact in both L2(0,T ;V ) and L2(0,T ;V ′) and weakly* compact in
L∞(0,T ;H), we can extract a subsequence of {yk} (which for simplicity we still denote by {yk})
converging to some y∗ ∈ L2(0,T ;V )∩L∞(0,T ;H) for both the weak topology of L2(0,T ;V ) and
the weak* topology of L∞(0,T ;H) and such that Ayk weakly converges to some η in L2(0,T ;V ′).
By (3.11) we also have that ‖uk‖2 is bounded, thus eventually passing to a further subsequence,
there exists u∗ ∈ L2(0,T ) such that uk converges to u∗ weakly in L2(0,T ). Also, by linearity of f
we can proceed as in the proof of Theorem 1.1, p. 159 of [7] to conclude that

{

d
dt y∗(t)+η(t) = f (t,u∗(t))
y(0) = y0.

Also, by a standard argument (see i.e. [19], Theorem 3) one can prove that ẏk → ẏ∗ weakly in
L2(0,T ;V ′), i.e. yk → y∗ weakly in W (0,T ). Thus, by (3.6) η(t) = A(t)y∗(t) and the proof is
complete. �

Having achieved the above convergence result, we introduce as in [19], a set D which can be either
V or a sufficiently large open subset of H and a mapping s : D → IRm continuously Fréchet differ-
entiable on D. The sliding surface S we consider is defined as S = {y ∈ D : s(y) = 0}. Proceeding
as in [19], by slightly modifying proofs, it is possible to show the following
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Corollary 3.1. Let the assumptions of Theorem 3.2 hold. Let zk(t) = s(yk(t)) and assume that one
of the following is satisfied:

(1) D = V , s is affine and zk → 0 uniformly in t;

(2) BH(0,K) ⊂ D, V is compactly embedded in H (here BH denotes a ball in H, while K is
defined in (3.14) above) and zk(t) → 0 for almost every t ∈ [0,T ].

Then the limit motion y∗ of Theorem 3.2 belongs to the sliding manifold S.

Remark 3.1. Note that every yk solves a finite-dimensional problem, thus for the approximate
solutions all results of the classical theory of variable structure systems and sliding mode control
of [17] are valid. Therefore existence results for system motions satisfying the requirements in
Corollary 3.1 and design methods to achieve them are available. See also the discussion of existence
under relaxed hypotheses developed in [19].

4. Conclusions and future work

In this paper we showed how the use of discontinuous controls can be validated in an infinite di-
mensional setting. For the linear, distributed case a semigroup approach combined with a definition
of generalised solution allows the interpretation of sliding modes as viable generalized solutions of
discontinuous differential equations.

As for linear boundary controls, we have analysed the convergence behaviour of finite dimen-
sional Faedo-Galerkin approximations for a class of variational problems, when sliding motions
are taken into consideration. Under some growth hypothesis on the norms of the controls, a sliding
motion exists.

While the notion of equivalent control has been extended quite simply in the first case, it
would be interesting to study how the results for boundary controls are related to a similar concept
and to study approximability of ideal sliding motions by real ones in this context.
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