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1. Preliminars and Notation

Let S⊆ Rn be closed. We denote, forx∈ Rn,

dS(x) = min{‖y−x‖ : y∈ S} (the distance ofx from S)
πS(x) = {y∈ S: ‖y−x‖= dS(x)} (the projections ofx ontoS)

B(S,ρ) = {y∈ Rn : dS(y)≤ ρ}

Supposef : Rn → R∪ {+∞} is lower semicontinuous, andepi( f ) := {(x,ξ) : ξ ≥ f (x)} and
dom( f ) = {x ∈ Rn : f (x) < +∞} are its epigraph and (effective) domain, respectively. Letx ∈
dom( f ). A vectorζ ∈Rn belongs to theproximal superdifferentialof f atx (notated byζ ∈ ∂P f (x)
if there existσ, η > 0 such that

f (y)≤ f (x)+ 〈ζ,y−x〉+σ‖y−x‖2 for all y∈ B(x,η). (1.1)

The proximal superdifferential of the distance functiondS is always nonempty at allx /∈ S.
We consider the control system:ẏ = f (y,u), u∈U whereU is a compact convex subset ofRm, S
is a closed subset ofRn called the target set,f is Lipschitz continuous inx in Rn \S, uniformly in
u. In particular, we refer to theaffinecase, if f takes the special form:

f (x,u) = g0(x)+
m

∑
i=1

uigi(x),

whereu1, ..,um∈ [−1,1] andg0,g1, ...,gm are vector fields ofRn with some smoothness.
We denote byF the family of vector fields associated toẏ = f (y,u), i.e. for everyx∈Rn, we have
F (x) := { f (x,u) : u∈U}.
We denote byyx,u(t) the solution of the system starting from pointx obtained using the controlu(·).
For fixedx /∈ S, theminimal timeT(x) to reachS from x is defined by

T(x) := inf{T ≥ 0 : ∃u(·) such thatyx,u(T) ∈ S}.

When the set of controlsu(·) steeringx to S is empty, thenT(x) = +∞. For r > 0, let

R = {x∈ Rn : T(x) < +∞}, Rδ = (R \S)∩B(S,δ)

2. Sufficient conditions for controllability

Consider the control systeṁx = f (x,u), u∈U set of controls with a smooth targetS. Assume
that there exist positive constantsδ,µ> 0 such that for allx∈ B(S,δ)\Swe have:

min
u∈U

〈DdS(x), f (x,u)〉 ≤ −µ (Petrov condition).

Then the system is controllable inB(S,δ). From a geometrical point of view, the condition states
that at every point there exists an admissible control such that the corresponding trajectory points
toward the target together with uniformity in the angle between the field and the gradient of the
distance which prevents vanishing of the scalar product. This is a very strong condition and it can
be proved that it is equivalent to Lipschitz continuity of the minimal time functionT. See also [3],
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and [7].
In the case of linear systemṡx = Ax+ Bu, A ∈ Matn×n(R), B ∈ Matn×m(R), u ∈ [−1,1]m, with
targetS= {0} the Kalman rank condition gives sufficient condition for controllability and imply
Hölder continuity ofT. Let j be the minimum positive integer such that the matrix:

(BAB...A jB)

has full rank. ThenT is ( 1
1+ j )-Hölder continuous.

This is related to some properties of the Lie algebra generated by the family of vector fields asso-
ciated to the system (see [6]). There are also some nonlinear version of this result concerning the
linearization of the system near an equilibrium point (see [2]) where the target is the equilibrium
point.
In [1] there is a condition for Hölder continuity ofT in the case of nonlinear symmetric systems
ẋ = ∑uigi(x) for a smooth target. The condition requires that if at a pointx̄∈ ∂SPetrov condition
does not hold, there exists a vector fieldF(x̄) generated by bracket operations from the vector fields
of the familyF := { f (·,u) : u∈U} associated to the system such that:

〈F(x̄),ν(x̄)〉< 0

whereν(x̄) is the normal unit vector to the targetSat x̄.
This condition can be viewed as a Petrov condition of higher order, and in fact it leads to Hölder
continuity ofT and no longer to Lipschitz continuity, where the exponent of the modulus of conti-
nuity depends from the number of Lie brackets which are involved.
Example: In R3 consider the systeṁx = X0 +u1X1 +u2X2, where

X0 =
1
12

(−y,x,0), X1 = (xz,yz,0), X2 = (0,0,1)

and define as target set the cylinderS:= {(x,y,z) ∈ R3 : x2 +y2 ≤ 1}. The vector fields areC∞ in
R3. We have for everyx /∈ S:

DdS(x) =
(x,y,0)√

x2 +y2
,

and

〈DdS,X0 +u1X1 +u2X2〉(x,y,z) = u1z
√

x2 +y2.

So Petrov condition fails in the planez= 0. The system is not symmetric since we have a non-
trivial drift X0, but [X1,X2](x,y,z) = (x,y,0). This case will be covered by Theorem3.2, since the
trajectory given by Lemma3.2approaches uniformly to the target.

3. The main result

In order to obtain estimates for the minimum time function in terms of the distance from
the targetS, we will use a sort of expansion of distance along the trajectories of the system in a
neighborhood of the considered point. These expansion will be crucial for our analysis. Indeed, if
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the target is sufficiently smooth (e.g.C2), we may consider the derivatives ofdS, but, in general, we
can consider weaker assumption onS (for example condition ensuring the semiconcavity ofdS).
The smoother is the target, the finer will be the estimates. Now, in the following two lemmas, we
consider two particular cases of affine systems with drift, and we write the expansion of particular
trajectories generated by using some switchings of the control.
Using theexponential notation, introduced by A. Agrachev and R. Gamkrelidze (for further details
we refer to [4] and references therein), we will denote byxetX the pointy(t) = exp(tX)(x) where
exp(tX)(x) is the solution at timet of the following Cauchy problem:

ẏ = X(y), y(0) = x∈Ω.

Lemma 3.1. Let f ,g beC∞ vector fields onRn, x̄∈ Rn, Vx̄ be an open bounded neighborhood of
x̄, and letu∈ R. For everyx∈Vx̄, set:

φx(t) = xet( f+ug)et( f−ug)

Then it holds:φx(t) = x+ 2t f (x)+ t2

2 (D f (x) f (x)+ u[ f ,g](x))+ o(t2), where|o(t2)| ≤ Lt3, with
L > 0 positive constant which does not depend onx∈Vx̄.

Proof. Follows by direct computations. ¤

Lemma 3.2. Let f ,g1,g2 beC∞ vector fields onRn, x̄∈Rn, Vx̄ be an open bounded neighborhood
of x̄. For everyx∈Vx̄, set:

φx(t) = xet( f+g1)et( f+g2)et( f−g1)et( f−g2)et( f−g1)et( f−g2)et( f+g1)et( f+g2)

Then it holds:φx(t) = xe8t f+2t2[g1,g2] + o(t2) where|o(t2)| ≤ Lt3, with L > 0 a positive constant
which does not depend onx∈Vx̄.

Proof. See [4]. ¤
The following theorem provides a sufficient local condition to have continuity and some regularity
estimates for the minimum timeT(·) for a non linear systeṁx = f (x,u), u∈U. Assume that the
target setS is of classC2. We are interested in the expansion of the compositiondS(yx(t)) around
t = 0, whereyx(t) is a generic trajectory of the system for which we know an expansion up to order
two:

yx(t) = x+ t ·vx
1 +

t2

2
·vx

2 +ox(t2)

In this case:

dS(yx,u(t)) = dS(x)+ t〈DdS(x),vx
1〉+ (3.1)

+
t2

2

(
〈〈D2dS(x),vx

1〉,vx
1〉+ 〈DdS(x),vx

2〉
)

+ox(t2).

In order to reach the target, we require two conditions:
1. the trajectoryyx,u(t) for t ≥ 0 small enough must approach the target, and this is implied by:

〈DdS(x),vx
1〉 ≤ 0, 〈〈D2dS(x),vx

1〉,vx
1〉+ 〈DdS(x),vx

2〉< 0.
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2. we can follow the trajectoryyx(t) for a certain time until the above condition are satisfied.
Suppose we have reached a pointx1. We are approaching the target by (1). Then we choose
another trajectory and restart formx1 following the new approaching trajectoryyx1(t) and so on. In
order to reach the target in a finite amount of time, we have to require that at each step the rate of
approach is sufficiently large. This will be done by an integral estimate.

Theorem 3.1 (The uniform case)Consider the systeṁx= f (x,u), u∈U. Suppose that the target
Sis such thatdS(·) is semiconcave onRn\ int(S) with constantK, and assume that∂Sis compact.
LetM = 1/(4L+14KL2)∧1/(2L+12KL2). Letδ > 0 andµ≥ 0,η > 0 be constant. We define for
everyx∈ B(S,δ): Tx

1 = Mµ∧2dS(x)/µ, Tx
2 = Mη∧

√
2dS(x)/η.

LetV = B(S,δ), assume that the following holds:
(S1) for everyx∈V there exists an admissible trajectoryyx(·) such that:

yx(t) = x+ t ·vx
1 +

t2

2
·vx

2 +ox(t2),

with |ox(t2)| ≤ Lt3. and for this trajectory it holds either:

a) if µ> 0, ∃ζx ∈ ∂PdS(x) : 〈ζx,v
x
1〉 ≤ −µ, yx(Tx

1 ) ∈V

or

b) ∃ζx ∈ ∂PdS(x) : 〈ζx,v
x
1〉 ≤ 0

and〈ζx,v
x
2〉+2K|vx

1|2 ≤−2η,yx(Tx
2 ) ∈V

(S2) for everyx∈V we have|vx
1|+ |vx

2| ≤ L

ThenR ⊇ B(S,δ), T is continuous onR and we haveT(x) ≤ T̃(x) for everyx ∈ B(S,δ). In
particular, if we can chooseµ(ρ) = C1ρα1 andη(ρ) = C2ρα2, we have thatT is Hölder continuous
of exponentα = α(α1,α2).

Proof.We give here a sketch of the proof, see [4] for the complete proof.

1. We use the superdifferential inequality1.1for the distance function along the trajectory.

2. Conditions(S1) ensures us that for a fixed amount of timet̄ the trajectory is approaching the
target and in the final point, condition(S1) still holds.

3. We give and estimate for̄t and for the rate of approach to the target.

4. We construct a sequence of pointsxi and timesti concatenating such trajectories and exploit-
ing conditions(S1).

5. The sequence converges to the target in a finite amount of time. The minimum timeT is
bounded from above by a continuous function of the distancedS and this gives the continuity.

Now we give a more general statement that allows to take nonconstantµ= µ(dS(x)),η = η(dS(x)),
in this case there is an integral condition ensuring convergence to the target in a finite time, and
giving continuity onRδ even ifR is not a neighborhood of the target.
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Theorem 3.2. Consider the systeṁx = f (x,u), u ∈ U. Suppose that the targetS satisfies an
internal sphere condition with uniform radius and letK be the (global) constant of semiconcavity
of dS(·) onRn\ int(S).
Let M = 1/(4L +14KL2)∧1/(2L +12KL2). Let δ > 0 andµ,η : [0,δ]→ R+ be two continuous,
nondecreasing functions, withµ(ρ) > 0 andη(ρ) > 0 whenρ > 0, satisfying

∫ δ

0

(
1

µ(ρ)
+

1
Mη2(ρ)

)
dρ < +∞,

∫ δ

0

(
1

µ(ρ)
+

1√
ρη(ρ)

)
dρ < +∞. (3.2)

We define for everyx∈ B(S,δ):

Tx
1 = Mµ(dS(x))∧2dS(x)/µ(dS(x)), Tx

2 = Mη(dS(x))∧
√

2dS(x)/η(dS(x),

LetV a subset ofB(S,δ) such that the following holds:

(S1) for everyx∈V there exists an admissible trajectoryyx(·) such that:

yx(t) = x+ t ·vx
1 +

t2

2
·vx

2 +ox(t2),

with |ox(t2)| ≤ Lt3. and for this trajectory it holds either

∃ζx ∈ ∂PdS(x) : 〈ζx,v
x
1〉 ≤ −µ(dS(x)), yx(Tx

1 ) ∈V (3.3)

or

∃ζx ∈ ∂PdS(x) : 〈ζx,v
x
1〉 ≤ 0 and〈ζx,v

x
2〉+2K|vx

1|2 ≤−2η(dS(x)),yx(Tx
2 ) ∈V (3.4)

(S2) for everyx∈V we have|vx
1|+ |vx

2| ≤ L

Then there exists a continuous functionT̃ such thatT̃(0) = 0 andT(x)≤ T̃(dS(x)) for everyx∈V.
In particular if conditions (S1) and (S2) hold for everyx ∈ Rδ we have thatT is continuous on
Rδ ∪S. Moreover if (S1) and (S2) hold for everyx ∈ B(S,δ) we have thatR ⊇ B(S,δ) and T is
continuous onR .

Corollary 3.1. In the same hypothesis of Theorem3.2, assume thatV = Rδ and there exist an
optimal controlux for x and a neighborhoodVx of x depending onx andux such thatyz,ux(T(x))∈R
for all z∈Vx∩V. Then we have continuity ofT on R ∩B(S,δ) and we can estimate the modulus
of continuity ofT with T̃. Moreover an estimateωT(ρ) = Cρα, which leads to Hölder continuity
(see [1],[ 4]), can be obtained, for example, if in the Theorem3.2, we can chooseµ(ρ) =C1ρα1 and
η(ρ) = C2ρα2.

Proof. The proofs follows the same outline of the previous case. The difference is given by the fact
that now at each step the rate of approach decreases, so integral condition plays a key role to have
convergence in finite time. See [4] for details. ¤
Remarks:
1. The condition on semiconcavity ofdS can be satisfied requiring thatSsatisfies an internal sphere
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condition with uniform radius (see [3])
2. In the case of smooth target, the termD2dS is related to the curvature. In particular, targets with
negative curvature can be approached better that others.
Example: The following example shows another situation where neither vector fields or Lie
bracket can help, but by geometrical properties of the (smooth) target, such as negative curva-
ture, we can construct a trajectory approaching the target itself. The system inR2 is
ż= X0(z)+uX1(z) whereX0(z) = (0,−x2), X1 = (1,0), |u| ≤ 1, and the target is:

S:= {|x| ≥ 2, y≤ 1}∪B((2,0),1)∪B((−2,0),1)∪{y≤ 0}\B((0,0),1).

We focus our attention on a small neighborhood of the targetB(S,δ), δ > 0. The critical set is the
y-axis{x = 0}∩B(S,δ), whereX0 vanishes and〈X1,DdS(0,y)〉= 0. Here, the trajectory requested
by Theorem3.2 is simply the one given by choosingu =±1. We refer to [4] for a complete study
of this case.

4. Conclusions and open problems

The given condition generalizes both Petrov condition (at first order) and Lie bracket
condition for symmetric systems (at second order) and Kalman rank condition at second order.
The results of [5], considering as targetC1-manifolds possibly with border (obtained with PDE
methods), are still not fully covered.
Conditions at higher order encounter some technical problems due to the fact that it cannot be
provided easily an expansion like the one contained in Lemma3.2. Indeed at order higher than 2
the presence of mixed terms involving brackets off ,g requires additional restrictions on vector
fields.
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