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1. Introduction

The Gurtin-Pipkin equation, proposed B],[is the following equation:

St(t,x):/otb(t—s)Ae(s,x) ds+f(t,x) xeQ,t>0. (1.1)

This equation was introduced in order to model the temperature evolution in a thermal system with
memory: We shall study this equation in a bounded redglowith “regular" boundaryl” (this
assumption is discussed below). We associate an initial condition and a boundary condition of
Dirichlet type to @.1):

8(0,x) = Bp(x) € L3(Q),  6(t,s) = u(s) € L2,(0,+;L3()), T =0Q. (1.2)

Reasons for this equation: 1) According to the “usual” heat equation, a signal propagates with infi-
nite speed. This is not physical. 2) Experience shows that at very low temperatures heat propagates
in a wave-like fashion.

Both these points are addressed by Hal)(which takes into account the past history of the
system. Thanks to this fact, E4..1) displays hyperbolic type properties as suggested by the special
caseb =1 andu = 0. In this case Laplace transform gives

AB(A) — 6y = %Aé()\) +f(n)
which displays some “hyperbolic look". In general, it turns out that signals whose propagation is
described by Eqll(1) have a finite speed, se2][

Our goal is to prove that a process governed by the Gurtin-Pipkin equAtit)nig exactly
controllable in finite timeaccording to the following definitionthere existsT > 0 such that for
everyd e L2(Q) there existss € L2(0, T;L(I")) which drives the solution of the G-P equation to
hit 6 at timeT. In contrast with this, the heat equation is only approximately controllable.

In fact, our first goal will be to define the solutions to the G-P equation with Dirichlet boundary
conditions, and to study their properties. We follow an idea of Belleni-Morante for this2hee [
and we reduce Ed1(J) to a Volterra equation (with bounded operators!) using the cosine operator
theory.

The proofs of the results reported here can be found3hlut the controllability proof pre-
sented here is shorter and more direct.

The bonus of this cosine operator approach is that controllability of Ef). i§ a direct con-
sequence of the (known) corresponding property of the wave equation:

Wt (t,X) = Aw(t, X) in Q
w(0,X) =Wo(X), Wt(0,X) = wi(X) in Q (1.3)
w(t,s) =u(s)onr.

We introduce now the assumptions used below.

Assumption 1. The kerneb(t) is twice continuously differentiable ai{0) = p > 0.
Controllability will be proved in sectiod under the additional assumption:
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e stronger regularity:b € C3;

e stronger positivity conditionb(t) is integrable on0, +) and
+00

b(0) = A b(t)dt >0.

The assumption that we make on the redibis:

Assumption 2. We assume that the regiéhis simply connected, with boundary of cla3& s

Remark 3. We observe:

e The conditionb(0) > 0 is crucial in order to have a hyperbolic type behavior. In order to
simplify the notations we shall pit(0) = 1. This amount to the choice of a suitable time
scale and is not restrictive.

e The assumption of is stronger then needed. For brevity we are not going to discuss this
here.

It is crucial to note: under the stated assumption€othe wave equatioril(3) is exactly
controllable in finite time.a

Finally we quote the following papers concerned with the controllability of the Gurtin-Pipkin
equation:|ll,13,/10,/12]

2. Cosine operators and the solutions of the Gurtin-Pipkin equation

Our first step is the definition of the solutions of the Gurtin-Pipkin equatiof).( We shall
use the cosine operator theory, as presented,ih4] and used in2, [7]. We shall use the same
notations as in2j.

Let A be the generator of an exponentially stable holomorphic semigroup on a Hilbert space
X (for us, the laplacian with Dirichlet homogeneous conditionsLé(R)). Let moreoverq =
i(—A)Y2. Itis known thate™ is aCy-group of operator orX. The strongly continuous operator
valued function 1

R.() = [eﬂt +e‘“‘ﬂ teR

is calledcosine operatoithe cosine operator generated Ay It is convenient to introduce the
operators

R_(t)zé[eﬂt—e*ﬂﬂ, St)=aR (1), tecRR.

The operato§(t) is called thesine operator(generated by.)
The following “integration by parts formulas" can be justified:

Lemma 4. Let&(s) € C1(0,T;X). We have
[ Ret-9E(5) do=£(0) R, (0E(0) +. [ R (t~9E(s) o5 (2.1)

/Ot R (t—s)&(s) ds= —R_()E(0) +ﬂ1/0t R, (t— 9&(s) ds 2.2)
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Now we make some formal computations which can be justified for “very regular" data and
which leads to Volterra integral equation which is then taken as the definition for the solution of
the G-P equation.

We ignore for simplicity the distributed inpdtt).

Let D be the Dirichlet map:

6=Du <— {AG:O
e‘r:U.

We write Eq.|L.1) as
B = /Ot b(t —s)A{B(s) —Du(s)} ds.

This is clearly legitimate iB(t,x) is a classical solution ofl(1). Now, we introducé€(t) =
B(t) — Du(t) and, ifuis regular and is a classical solution, we see that

& = /Ot b(t —s)A&(s) ds— DU'(t). (2.3)

We apply the operatdR, (t — s) to both the sides of the equalit2.@) and we integrate from
Otot. After several formal manipulations (justified for “regular” data) based on the integration by
parts formula we find the following integral equation tor

t S
£(1) = RiDEO)+ [ Ro(t—s) [ B(s—nag(n o ds
—Du(t) + R, (t)Du(0) —/‘Zl/ot R_(t—s)Du(s) ds.

We re-introduced and we find thaB solves the following equivalent Volterra integral equa-
tions

a(t) = {R+(t)90—ﬂl/ot R_(t—s)Dv(s) ds
+/0tR+(t—s)f(s) ds}+/OtL(t—s)9(s) ds,
a(t) = {&(t)eo—ﬂ/()t&(t—s)Du(s) ds

t t
—/ L(t —s)Du(s) ds+/ Ri(t—9)f(9) ds}
0 0
+ / ‘L(t—9)8(s) ds. 2.4)
0

whereu andv are related by
S
v(s) :u(s)+/ b'(s—r)u(r) dr. (2.5)
0

This equation admits precisely one solutiog L?(0,T;L?(I")) for everyv € L?(0,T;L?(I")) and
the transformation fromr to u is linear, continuous and with continuous inverse, for eviery O.
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Remark 5. Itis important now to recall that
t t
ﬁl/ R_(t—s)Du(s) ds:A/ S(t—s)Du(s) ds (2.6)
0 0

defines a linear and continuous transformation flof(0, T;L?(I")) to C(0, T;L?(Q)), for every
T >0,see@. 1

This important remark suggests the following definition:

Definition 6. The solutions the Gurtin-Pipkin equatioh.1) are those continuous functiolgt)
which solve the Volterra equatio@.4).

3. Regularity properties of the solutions

From the very definition, the solutions of EA.T) belong toC([0, T],L?(Q)). In fact, we
shall need the following more precise results, which are only stated here. We recdbiat=
H2(Q) NH(Q) so thatdomAa = H3(Q).

Theorem 7. The transformatior{o, f,u) — 6(-; 8o, f,u) is linear and continuous frorh?(Q) x
L?(Q) x L?(G) to C(0,T;L%(Q)). If f =0, u= 0 and By € domAX then8(t) € C(0,T;domA¥).
Moreover,

1) If f € CY(0,T;L?(Q)), uec C?(0,T;L?()) and if8p — Du(0) € domA then&(t) = B(t) — Du(t)
belongs taC'(0, T;L?(Q)) NC(0,T;domA).

2) if furthermoreBy — Du(0) € domA, f(0) —DU'(0) =0, f € C2(0, T;L?(Q)) anduc C3(0,T;L?(I"))
then: a) if f”(t) andu”(t) are exponentially bounded, the functigft), &'(t), Ag(t) are contin-
uous and exponentially bounded; @&(t) solves Eq.1.1) in the sense thaf(t) is continuously
differentiable, takes values @tomA and for everyt > 0 we have

t
&= / bt — S)AE(S) ds— DU/ (t) + f (t).
0
The results that most interest us concern normal derivatives. Let us introduce the trace operator

99

Vle:an

r

We use the notatioh« 6 to denote the convolution,
(bx8)(t) = /0t b(t — $)8(s) ds.
Lemma 8. Letu=0, f = 0. We have:
y1(b%8) e H(0,T;L3(T"))

and the transformation frory € L?(Q) to y; (b%8) € H=%(0, T;L?(I")) is continuous.

015/5



Controllability of the Gurtin-Pipkin equation Luciano Pandolfi

The usual proofs of the controllability of wave type equations are based on two inequalities,
the “direct” and the “inverse" inequality. The use of the inverse inequality for the Gurtin-Pipkin
equation is bypassed here, since our controllability result is derived from the known controllability
property of the wave equation. Also the direct inequality is not used. Only the weaker result
in Lemma8 is used. However, the direct inequality is an additional piece of information on the
regularity of the solutions and it has its own interest. It turns out that the direct inequality holds but
it needs not to be proved anew: it is a consequence of the corresponding property of the solutions
of the wave equation. For completeness the proof fibghif reported.

Let us consider the wave equatidnd) with u = 0 andw; = 0. It is known that

w(t) = Ry (t)wo, teR
and ifwp € H3(Q) theny;w(t) exists as an element bf (—T,T;L?(I")). Moreover,

Wo — yiw(t) = va[R (t)wo] (3.1)

is continuous fronwgp € H}(Q) to L2(—T,T;L?(I")) for everyT > 0, see ®, 11, 6]. Here the full
strength of the assumption made @ris needed.

The sense in which the trace exists is as follows: it exists for the “regular” veagork is
proved the stated continuous dependence, so that the trace operator is extended by continuity-to
every initial condition inH3(Q).

Theorem 9. Let f andu be zero. The transformation
B0 — v16
is continuous fronH3 (Q) to L2(0, T; L?(")) for everyT > 0.

Proof We proved (Lemméd)) that if 8 € domAK then8(t) € domAK for everyt so that the trace
y16(t) exists in the usual sense, provided thi large enough. We prove continuity frarg(Q) to
L2(G) so that the transformatidy — y18(t) can be extended to every initial conditine H}(Q).

Let w(t) = R4 (t)Bo be the solution of probleml(3) (with now wp = 8p). Then,8(t) is the
solution of the Volterra integral equation

t—s

G(t):w(t)Jr/ot [R+(t—s)b’(0)6(s)+ A R.(t—s—v)b’(v)[B(s)] dv| ds
- /0 "t —9)8(s) ds. (3.2)

Let T > 0 be fixed. The properties of the wave equation recalled above show that for every
fixed s, the function

t—y1[R(t—9)8(s)]
is square integrable, hence it is integrable. We now proceed in two steps.

Step 1) we prove tha— y; [R, (t —s)8(s)] exists and belongs 1?(G) for a.e.t.
We shall prove below that the function ef

s— [ wiR (5009 a (3.3)
0
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is continuous, hence square integrable. Granted this we can integrate,

L[ wire -0 a

L

Now, Fubini theorem shows that the function

2
ds

2
dt} ds < 4oo. (3.4)

V1 [Ri(t—9)8(s)]

s— V1R (t—9)8(s)]

exists a.e. and belongst8(G). Moreover,

T T ) T (T-s )
L[ IvRet=s8@ P as= [ [ laRi(r)6(s)2ar ds

Inequalities8.4) and B.5) show that the function
t
t— [ ViR (t-9)(s)] ds.

as an element df?(Q), depends continuously @ € H3(Q).
In order to complete this argument we prove continuity of the functioB.i§).(We represent

[ iR - 9805) iR, (1)) et
= [ R~ 909) ~viR.(t—90(3)] a 3.6)
+ [ R (- 90() WR. (- )81 o (3.7)

We know from Theorenid point 1) that ifp € H}(Q) = dom4 then the solutio(s) is continuous
from sto H}(Q). Hence,

1im [8(9) — 8(5) | 0) = O-

This shows that the integral il3/€) tends to zero, thanks to the regularity of the trace operator of
thewaveequation.
The integral in'8.7) is represented as

[ IR (-84 (8- 9)8(8) W (- )0(3)] .

This tends to zero fos— s — 0, thanks to the Lebesgue theorem on the continuity of the shift.
We recapitulate: we have now proved tyaR . (t — s)0(s) is well defined, as an element of
L2, both as a function afand as a function d. In order to complete the proof:
Step 2) we prove that the tragg(s) exists inL?(G) and depends continuously 8p< H(Q).
We go back to the equatioB3.€) that we now represent as

8(t) = F(t) +/0t b (t —5)8(s) ds.
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Here

F(t) :y(t)+/()t [R+(t—s)b’(0)9(s)+At_SR+(t—s—v)b”(v)[e(s)] dv| ds

and we proved thagF (t) € L?(G) is a continuous function dip € H}(Q).
The functionb/(t) is scalar, so that fo8g € domAX, k large enough, we have

y18(t) = y1F (t) + /O t k(t—s)y1F(s) ds

wherek(t) is the resolvent kernel df (t). The required continuity property gf6(t) now follows
because the right hand side of this equality is a continuous functigiF¢f) € L%(G). 1

4. Controllability

Up to now we only usedb € C2. In fact, b continuous and with two continuous derivatives
defined with the exception of a finite number of points will do. For the next controllability theorem
we useb € C3. We don’t know at what extent this can be weakened.

Theorem 10. Letb(0) > 0 andb(0) > 0. There existd > 0 and for evend; € L2(Q) there exists
u € L%(G) such that the corresponding solutiért;u) of (1.1) (with f = 0) satisfies

B(T;u)=06,.

In the proof we use the known results on the controllability of the wave equation and a compactness
argument, and we prove first that the reachable space is closed with finite codimengidarfye.
We then characterize the orthogonal of the reachable space and we prove t@at it is

Idea of the proof: letL be the Volterra operator ii2(4) ands be the i-o map of the hyperbolic
system from the boundary input to the position, given/®¢)( A standard trick can be used and
we can confine ourselves to the céigd| < q < 1 so that we have

0=—Sv+108, B=—[—1]tsv.

We compute fot = T and we prove that fof large enough the operatef-) — 6(T) has closed
and dense image. Closure is obtained since we prove that the operator is the sum of a surjective
operator (a consequence of the known controllability property of the wave equation) plus a compact
operator. Thanks to this we can even say that the image has finite codimension. Density is via a
direct verification, based on Lemr& We present here a proof of this last fact that is easier and
more direct then the proof irLg].

Let Rr be theL?(Q) component of the reachable set of the wave equation:

Wi = An, t>0,xecQ

w(0,x) =0, wm(0,x) =0 xeQ, w(t,x) =v(t,x) onT. “4.1)

Rr = {W(T;v) €L2(Q), velX(G)}=Imsr
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where T
Stv= A/ S(T —s)Dv(s) ds.
0

It is known that forT large we haveRy = L2(Q) while we recall
t
a(t;v) = 54/ R_(t— s)Dv(s) ds+ £
0
where .
(£6) (t) = / L)(t —9)8(s) ds.
0

It is convenient to represemt = £, + £, where
(Lle) (t) = /0t {b’(t —9)0(s) — Otstq(t —s—v)b’(v)[B(s)] dv| ds
t
(Lz(%)) (t)=b(0) /O R, (t—9)6(s) ds.

A standard trick can be used to obtain that the both the opefatat,: C(0,T,L%(Q)) to itself
have norm less then a fixep 1. We assume that this has already been
The crucial lemma that we now prove is:

Lemma 11. For everyT > Othere exists a bounded boundedly invertible operatdn L?(G) and
a compact operatoKy fromL?(G) to L?(Q) such that

Ry =im {STJT-F'KT}- (4.2)

The conditionb € C? is used in order to make sense of the integration by parts needed in the
proof of this lemma.
We combine this with the exact controllability of the wave equation and we get

Theorem 12. There exist§ > 0 such that the reachable s&f is closed with finite codimension.

Moreover, due to the shift invariance of the equation, the reachable Betrat we reachable
set atT +tp, obtained with inputs which are zero up to titgecoincide.

Now, the reachable st (T) increases with time so that

Reo = |J Rr = JRn-
T>0 n

We recall that for largd the codimension of the reachable set is finite. This and Baire Theorem
implies that the codimension of the reachable set is constaiit fage enough and there exidts
such thatRy = L%(Q) if and only if R, = L2(Q).

Now we characterize the elements®E,]- (a finite dimensional subspaceldf(Q)) by using
the adjoint equation

i
= [ bls-DAES D, & =0, ET)=k (43)

equivalently

t
y= [ bt-9ayeds. ¥ =0, Y0 =. (4.4)
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Theorem 13. The vector € L2(Q) belongs to[®Rr]* if and only if the solutiorg(t) of equa-
tion (4.3) satisfies

;
yl/t b(r—t)E(rx)dr=0 0<t<T. (4.5)

equivalently if the solutiog(t) to Eq. 4.4) satisfies
t
yl/ b(t —s)y(s,x) ds=0 0<t<T. (4.6)
0

We now take a more direct route then [8]. We want to prove that i€y € R; then& = 0.
We know that condition4.6) holds for the solution o0f4.4), for everyt > 0. The idea now is to
take the Laplace transform gf(bxy), which must be zero, and to use this to deduce yhat0.
Unfortunately however we cannot apply an elementof to e, which is not zero fot = 0.
We bypass this problem by applyiyg(bxy to [e™ — e °!] whereo € IR is fixed (large enough).
We first use, — &o, & regular, so thay;(bxy) converges to zero ikl ~* and (the first integral
denotes duality pairing anddenotes the convolution)

0= /+m Mya(b(-) *y(;€0)) —Ilm/+m —e Myy(bxy(t;&n)).

This equality makes sense when the pairing is betw&g0, T) andH~1(0,T) but it is easy to see
that the limit forT — +oo exists provided thafleA ando € IR are large enough.
For &, regular the second integral is easily computed

y1 {BOVN)AI —b(A\)A 1, — b(0) [0l — b(0)A] &0}

6(00)_6(}\)\)} y1{<6()\)\)l —A>1 Bé)l —A} 1En-}

It is known thaty; when applied to elements of the domainfois given by—D*A so that the
last expression is a continuous functiorgofts limit for &, — &g is

[6(00)_6()\)\)] yl{ <t3(}\)\)| —A>_l Bfo)l —A]_lio.}

and, as we noted, this is zero. Hence we have
A -1 -
I-A) =Z=0, Z=[ol—b(0)A] *& € domA.
n (557 ) 1 ~B(o)A] %o

This equality holds for ever) € C with the exception of a discrete set, whé\rﬁﬁ()\) takes
values in the spectrum @& and a suitable but fixed value of

We recall thab(0) > 0 andb()) is real forA real. Hence, any positiv# (close to zero) has
the formA/b(A) for A on a suitable interval of the real axis. It follows that for such valuex of
hence for every by analytic continuation, we have

vi(Zl —A)"1Zp=0.
Now, W(A) = (22 —A)~1=gis the Laplace transform of the solutiwiit) of thewaveequation'1.3)

with
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e homogeneous Dirichlet conditiongsw(t) = 0 whereyy is the trace o sincew(0) = =p €
domA, w;(0) = 0.

e and, at the same time, withw(t) = 0.

From [11, Cap. I, Cor. 5.1] we see thatt) = 0, hence= = 0 so that alsd, = 0, as wanted.
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