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1. Introduction

The Gurtin-Pipkin equation, proposed in [5], is the following equation:

θt(t,x) =
Z t

0
b(t−s)∆θ(s,x) ds+ f (t,x) x∈Ω , t ≥ 0. (1.1)

This equation was introduced in order to model the temperature evolution in a thermal system with
memory: We shall study this equation in a bounded regionΩ with “regular" boundaryΓ (this
assumption is discussed below). We associate an initial condition and a boundary condition of
Dirichlet type to (1.1):

θ(0,x) = θ0(x) ∈ L2(Ω) , θ(t,s) = u(s) ∈ L2
loc(0,+∞;L2(Γ)) , Γ = ∂Ω . (1.2)

Reasons for this equation: 1) According to the “usual" heat equation, a signal propagates with infi-
nite speed. This is not physical. 2) Experience shows that at very low temperatures heat propagates
in a wave-like fashion.

Both these points are addressed by Eq. (1.1) which takes into account the past history of the
system. Thanks to this fact, Eq. (1.1) displays hyperbolic type properties as suggested by the special
caseb≡ 1 andu = 0. In this case Laplace transform gives

λθ̂(λ)−θ0 =
1
λ

∆θ̂(λ)+ f̂ (λ)

which displays some “hyperbolic look". In general, it turns out that signals whose propagation is
described by Eq. (1.1) have a finite speed, see [2].

Our goal is to prove that a process governed by the Gurtin-Pipkin equation (1.1) is exactly
controllable in finite time,according to the following definition:there existsT > 0 such that for
everyθ̃ ∈ L2(Ω) there existsu∈ L2(0,T;L2(Γ)) which drives the solution of the G-P equation to
hit θ̃ at timeT. In contrast with this, the heat equation is only approximately controllable.

In fact, our first goal will be to define the solutions to the G-P equation with Dirichlet boundary
conditions, and to study their properties. We follow an idea of Belleni-Morante for this (see [2])
and we reduce Eq. (1.1) to a Volterra equation (with bounded operators!) using the cosine operator
theory.

The proofs of the results reported here can be found in [13] but the controllability proof pre-
sented here is shorter and more direct.

The bonus of this cosine operator approach is that controllability of Eq. (1.1) is a direct con-
sequence of the (known) corresponding property of the wave equation:

wtt(t,x) = ∆w(t,x) in Ω
w(0,x) = w0(x) , wt(0,x) = w1(x) in Ω
w(t,s) = u(s) on Γ.

(1.3)

We introduce now the assumptions used below.

Assumption 1. The kernelb(t) is twice continuously differentiable andb(0) = µ> 0.
Controllability will be proved in section4 under the additional assumption:
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• stronger regularity:b∈C3;

• stronger positivity condition:b(t) is integrable on[0,+∞) and

b̂(0) =
Z +∞

0
b(t) dt > 0.

The assumption that we make on the regionΩ is:

Assumption 2. We assume that the regionΩ is simply connected, with boundary of classC2.

Remark 3. We observe:

• The conditionb(0) > 0 is crucial in order to have a hyperbolic type behavior. In order to
simplify the notations we shall putb(0) = 1. This amount to the choice of a suitable time
scale and is not restrictive.

• The assumption onΩ is stronger then needed. For brevity we are not going to discuss this
here.

It is crucial to note: under the stated assumptions onΩ, the wave equation (1.3) is exactly
controllable in finite time.

Finally we quote the following papers concerned with the controllability of the Gurtin-Pipkin
equation: [1, 3, 10, 12]

2. Cosine operators and the solutions of the Gurtin-Pipkin equation

Our first step is the definition of the solutions of the Gurtin-Pipkin equation (1.1). We shall
use the cosine operator theory, as presented in [4, 14] and used in [2, 7]. We shall use the same
notations as in [2].

Let A be the generator of an exponentially stable holomorphic semigroup on a Hilbert space
X (for us, the laplacian with Dirichlet homogeneous conditions onL2(Ω)). Let moreoverA =
i(−A)1/2. It is known thateAt is aC0-groupof operator onX. The strongly continuous operator
valued function

R+(t) =
1
2

[
eAt +e−At

]
t ∈ IR

is calledcosine operator(the cosine operator generated byA). It is convenient to introduce the
operators

R−(t) =
1
2

[
eAt −e−At

]
, S(t) = A−1R−(t) , t ∈ IR .

The operatorS(t) is called thesine operator(generated byA.)
The following “integration by parts formulas" can be justified:

Lemma 4. Let ξ(s) ∈C1(0,T;X). We haveZ t

0
R+(t−s)ξ̇(s) ds= ξ(t)−R+(t)ξ(0)+A

Z t

0
R−(t−s)ξ(s) ds (2.1)Z t

0
R−(t−s)ξ̇(s) ds=−R−(t)ξ(0)+A

Z t

0
R+(t−s)ξ(s) ds (2.2)
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Now we make some formal computations which can be justified for “very regular" data and
which leads to Volterra integral equation which is then taken as the definition for the solution of
the G-P equation.

We ignore for simplicity the distributed inputf (t).
Let D be the Dirichlet map:

θ = Du ⇐⇒
{

∆θ = 0
θ|Γ = u.

We write Eq. (1.1) as

θt =
Z t

0
b(t−s)A{θ(s)−Du(s)} ds.

This is clearly legitimate ifθ(t,x) is a classical solution of (1.1). Now, we introduceξ(t) =
θ(t)−Du(t) and, ifu is regular andθ is a classical solution, we see that

ξt =
Z t

0
b(t−s)Aξ(s) ds−Du′(t) . (2.3)

We apply the operatorR+(t−s) to both the sides of the equality (2.3) and we integrate from
0 to t. After several formal manipulations (justified for “regular" data) based on the integration by
parts formula we find the following integral equation forξ:

ξ(t) = R+(t)ξ(0)+
Z t

0
R−(t−s)

Z s

0
b′(s− r)Aξ(r) dr ds

−Du(t)+R+(t)Du(0)−A
Z t

0
R−(t−s)Du(s) ds.

We re-introduceθ and we find thatθ solves the following equivalent Volterra integral equa-
tions

θ(t) =
{

R+(t)θ0−A
Z t

0
R−(t−s)Dv(s) ds

+
Z t

0
R+(t−s) f (s) ds

}
+
Z t

0
L(t−s)θ(s) ds,

θ(t) =
{

R+(t)θ0−A
Z t

0
R−(t−s)Du(s) ds

−
Z t

0
L(t−s)Du(s) ds+

Z t

0
R+(t−s) f (s) ds

}

+
Z t

0
L(t−s)θ(s) ds. (2.4)

whereu andv are related by

v(s) = u(s)+
Z s

0
b′(s− r)u(r) dr . (2.5)

This equation admits precisely one solutionu∈ L2(0,T;L2(Γ)) for everyv∈ L2(0,T;L2(Γ)) and
the transformation fromv to u is linear, continuous and with continuous inverse, for everyT > 0.
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Remark 5. It is important now to recall that

A
Z t

0
R−(t−s)Du(s) ds= A

Z t

0
S(t−s)Du(s) ds (2.6)

defines a linear and continuous transformation fromL2(0,T;L2(Γ)) to C(0,T;L2(Ω)), for every
T > 0, see [8].

This important remark suggests the following definition:

Definition 6. The solutions the Gurtin-Pipkin equation (1.1) are those continuous functionsθ(t)
which solve the Volterra equation (2.4).

3. Regularity properties of the solutions

From the very definition, the solutions of Eq. (1.1) belong toC([0,T],L2(Ω)). In fact, we
shall need the following more precise results, which are only stated here. We recall thatdomA =
H2(Ω)∩H1

0(Ω) so thatdomA = H1
0(Ω).

Theorem 7. The transformation(θ0, f ,u)→ θ(·;θ0, f ,u) is linear and continuous fromL2(Ω)×
L2(Q)× L2(G) to C(0,T;L2(Ω)). If f = 0, u = 0 and θ0 ∈ domAk thenθ(t) ∈C(0,T;domAk).
Moreover,

1) If f ∈C1(0,T;L2(Ω)), u∈C2(0,T;L2(Γ)) and if θ0−Du(0) ∈ domA thenξ(t) = θ(t)−Du(t)
belongs toC1(0,T;L2(Ω))∩C(0,T;domA).
2) if furthermoreθ0−Du(0)∈domA, f (0)−Du′(0)= 0, f ∈C2(0,T;L2(Ω)) andu∈C3(0,T;L2(Γ))
then: a) if f ′′(t) and u′′′(t) are exponentially bounded, the functionξ(t), ξ′(t), Aξ(t) are contin-
uous and exponentially bounded; b)θ(t) solves Eq. (1.1) in the sense thatξ(t) is continuously
differentiable, takes values indomA and for everyt ≥ 0 we have

ξt =
Z t

0
b(t−s)Aξ(s) ds−Du′(t)+ f (t) .

The results that most interest us concern normal derivatives. Let us introduce the trace operator

γ1θ =
∂

∂n
θ|Γ

We use the notationb?θ to denote the convolution,

(b?θ)(t) =
Z t

0
b(t−s)θ(s) ds.

Lemma 8. Letu = 0, f = 0. We have:

γ1(b?θ) ∈ H−1(0,T;L2(Γ))

and the transformation fromθ0 ∈ L2(Ω) to γ1(b?θ) ∈ H−1(0,T;L2(Γ)) is continuous.
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The usual proofs of the controllability of wave type equations are based on two inequalities,
the “direct" and the “inverse" inequality. The use of the inverse inequality for the Gurtin-Pipkin
equation is bypassed here, since our controllability result is derived from the known controllability
property of the wave equation. Also the direct inequality is not used. Only the weaker result
in Lemma8 is used. However, the direct inequality is an additional piece of information on the
regularity of the solutions and it has its own interest. It turns out that the direct inequality holds but
it needs not to be proved anew: it is a consequence of the corresponding property of the solutions
of the wave equation. For completeness the proof from [13] is reported.

Let us consider the wave equation (1.3) with u = 0 andw1 = 0. It is known that

w(t) = R+(t)w0 , t ∈ IR

and ifw0 ∈ H1
0(Ω) thenγ1w(t) exists as an element ofL2(−T,T;L2(Γ)). Moreover,

w0 −→ γ1w(t) = γ1[R+(t)w0] (3.1)

is continuous fromw0 ∈ H1
0(Ω) to L2(−T,T;L2(Γ)) for everyT > 0, see [9, 11, 6]. Here the full

strength of the assumption made onΩ is needed.
The sense in which the trace exists is as follows: it exists for the “regular" vectorsw0. It is

proved the stated continuous dependence, so that the trace operator is extended by continuity to
every initial condition inH1

0(Ω).

Theorem 9. Let f andu be zero. The transformation

θ0 → γ1θ

is continuous fromH1
0(Ω) to L2(0,T;L2(Γ)) for everyT > 0.

Proof. We proved (Lemma (7)) that if θ0 ∈ domAk thenθ(t) ∈ domAk for everyt so that the trace
γ1θ(t) exists in the usual sense, provided thatk is large enough. We prove continuity fromH1

0(Ω) to
L2(G) so that the transformationθ0→ γ1θ(t) can be extended to every initial conditionθ0∈H1

0(Ω).
Let w(t) = R+(t)θ0 be the solution of problem (1.3) (with now w0 = θ0). Then,θ(t) is the

solution of the Volterra integral equation

θ(t) = w(t)+
Z t

0

[
R+(t−s)b′(0)θ(s)+

Z t−s

0
R+(t−s−ν)b′′(ν)[θ(s)] dν

]
ds

−
Z t

0
b′(t−s)θ(s) ds. (3.2)

Let T > 0 be fixed. The properties of the wave equation recalled above show that for every
fixeds, the function

t −→ γ1 [R+(t−s)θ(s)]

is square integrable, hence it is integrable. We now proceed in two steps.
Step 1) we prove thats→ γ1 [R+(t−s)θ(s)] exists and belongs toL2(G) for a.e.t.
We shall prove below that the function ofs

s→
Z T

0
γ1 [R+(t−s)θ(s)] dt (3.3)
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is continuous, hence square integrable. Granted this we can integrate,Z T

0

∣∣∣∣
∣∣∣∣
Z T

0
γ1 [R+(t−s)θ(s)] dt

∣∣∣∣
∣∣∣∣
2

ds

≤
Z T

0

{
T ·
Z T

0

∣∣∣∣
∣∣∣∣γ1 [R+(t−s)θ(s)]

∣∣∣∣
∣∣∣∣
2

dt

}
ds< +∞ . (3.4)

Now, Fubini theorem shows that the function

s−→ γ1 [R+(t−s)θ(s)]

exists a.e. and belongs toL2(G). Moreover,Z T

0

Z T

0
||γ1R+(t−s)θ(s)||2 dt ds=

Z T

0

Z T−s

−s
||γ1R+(r)θ(s)||2 dr ds

≤M||θ||2L2(0,T;H1
0(Ω)) ≤ M̃||θ0||2H1

0(Ω) . (3.5)

Inequalities (3.4) and (3.5) show that the function

t −→
Z t

0
γ1[R+(t−s)θ(s)] ds,

as an element ofL2(Q), depends continuously onθ0 ∈ H1
0(Ω).

In order to complete this argument we prove continuity of the function in (3.3). We representZ T

0

[
γ1R+(t−s)θ(s)− γ1R+(t−s′)θ(s′)

]
dt

=
Z T

0

[
γ1R+(t−s)θ(s)− γ1R+(t−s)θ(s′)

]
dt (3.6)

+
Z T

0

[
γ1R+(t−s)θ(s′)− γ1R+(t−s′)θ(s′)

]
dt (3.7)

We know from Theorem7 point 1) that ifθ0∈H1
0(Ω) = domA then the solutionθ(s) is continuous

from s to H1
0(Ω). Hence,

lim
s′→s

||θ(s)−θ(s′)||H1
0(Ω) = 0.

This shows that the integral in (3.6) tends to zero, thanks to the regularity of the trace operator of
thewaveequation.

The integral in (3.7) is represented asZ T

0

[
γ1R+(t−s′+(s′−s))θ(s′)− γ1R+(t−s′)θ(s′)

]
dt .

This tends to zero fors−s′→ 0, thanks to the Lebesgue theorem on the continuity of the shift.
We recapitulate: we have now proved thatγ1R+(t− s)θ(s) is well defined, as an element of

L2, both as a function oft and as a function ofs. In order to complete the proof:
Step 2) we prove that the traceγ1θ(s) exists inL2(G) and depends continuously onθ0∈H1

0(Ω).
We go back to the equation (3.2) that we now represent as

θ(t) = F(t)+
Z t

0
b′(t−s)θ(s) ds.

015 / 7



P
o
S
(
C
S
T
N
A
2
0
0
5
)
0
1
5

Controllability of the Gurtin-Pipkin equation Luciano Pandolfi

Here

F(t) = y(t)+
Z t

0

[
R+(t−s)b′(0)θ(s)+

Z t−s

0
R+(t−s−ν)b′′(ν)[θ(s)] dν

]
ds

and we proved thatγ1F(t) ∈ L2(G) is a continuous function ofθ0 ∈ H1
0(Ω).

The functionb′(t) is scalar, so that forθ0 ∈ domAk, k large enough, we have

γ1θ(t) = γ1F(t)+
Z t

0
k(t−s)γ1F(s) ds

wherek(t) is the resolvent kernel ofb′(t). The required continuity property ofγ1θ(t) now follows
because the right hand side of this equality is a continuous function ofγ1F(t) ∈ L2(G).

4. Controllability

Up to now we only usedb ∈C2. In fact, b continuous and with two continuous derivatives
defined with the exception of a finite number of points will do. For the next controllability theorem
we useb∈C3. We don’t know at what extent this can be weakened.

Theorem 10. Letb(0) > 0 andb̂(0) > 0. There existsT > 0 and for everyθ1 ∈ L2(Ω) there exists
u∈ L2(G) such that the corresponding solutionθ(t;u) of (1.1) (with f = 0) satisfies

θ(T;u) = θ1 .

In the proof we use the known results on the controllability of the wave equation and a compactness
argument, and we prove first that the reachable space is closed with finite codimension forT large.
We then characterize the orthogonal of the reachable space and we prove that it is0.

Idea of the proof: letL be the Volterra operator in (2.4) andS be the i-o map of the hyperbolic
system from the boundary input to the position, given by (2.6). A standard trick can be used and
we can confine ourselves to the case||L ||< q < 1 so that we have

θ =−Sv+Lθ , θ =− [I −L ]−1 Sv.

We compute fort = T and we prove that forT large enough the operatorv(·)→ θ(T) has closed
and dense image. Closure is obtained since we prove that the operator is the sum of a surjective
operator (a consequence of the known controllability property of the wave equation) plus a compact
operator. Thanks to this we can even say that the image has finite codimension. Density is via a
direct verification, based on Lemma8. We present here a proof of this last fact that is easier and
more direct then the proof in [13].

Let R̃T be theL2(Ω) component of the reachable set of the wave equation:

wtt = ∆η , t > 0, x∈Ω
w(0,x) = 0, wt(0,x) = 0 x∈Ω , w(t,x) = v(t,x) on Γ .

(4.1)

I.e.

R̃T =
{

w(T;v) ∈ L2(Ω) , v∈ L2(G)
}

= ImST
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where

STv = A
Z T

0
S(T−s)Dv(s) ds.

It is known that forT large we havẽRT = L2(Ω) while we recall

θ(t;v) = A
Z t

0
R−(t−s)Dv(s) ds+Lθ

where

(Lθ)(t) =
Z t

0
L)(t−s)θ(s) ds.

It is convenient to representL = L1 +L2 where
(

L1θ
)

(t) =
Z t

0

[
b′(t−s)θ(s)−

Z t−s

0
R+(t−s−ν)b′′(ν)[θ(s)] dν

]
ds

(
L2θ

)
(t) = b′(0)

Z t

0
R+(t−s)θ(s) ds.

A standard trick can be used to obtain that the both the operatorL1, L2: C(0,T,L2(Ω)) to itself
have norm less then a fixedq < 1. We assume that this has already been

The crucial lemma that we now prove is:

Lemma 11. For everyT > 0 there exists a bounded boundedly invertible operatorJT in L2(G) and
a compact operatorKT fromL2(G) to L2(Ω) such that

RT = im

{
STJT +KT

}
. (4.2)

The conditionb∈C3 is used in order to make sense of the integration by parts needed in the
proof of this lemma.

We combine this with the exact controllability of the wave equation and we get

Theorem 12. There existsT > 0 such that the reachable setRT is closed with finite codimension.

Moreover, due to the shift invariance of the equation, the reachable set atT and we reachable
set atT + t0, obtained with inputs which are zero up to timet0, coincide.

Now, the reachable setR (T) increases with time so that

R∞ =
[

T>0

RT =
[
n

Rn .

We recall that for largeT the codimension of the reachable set is finite. This and Baire Theorem
implies that the codimension of the reachable set is constant forT large enough and there existsT
such thatRT = L2(Ω) if and only if R∞ = L2(Ω).

Now we characterize the elements of[R∞]⊥ (a finite dimensional subspace ofL2(Ω)) by using
the adjoint equation

ξt =−
Z T

t
b(s− t)∆ξ(s) ds, ξ|Γ = 0, ξ(T) = ξ0 (4.3)

equivalently

yt =
Z t

0
b(t−s)∆y(s) ds, y|Γ = 0, y(0) = ξ0 . (4.4)
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Theorem 13. The vectorξ0 ∈ L2(Ω) belongs to[RT ]⊥ if and only if the solutionξ(t) of equa-
tion (4.3) satisfies

γ1

Z T

t
b(r− t)ξ(r,x) dr = 0 0≤ t ≤ T . (4.5)

equivalently if the solutiony(t) to Eq. (4.4) satisfies

γ1

Z t

0
b(t−s)y(s,x) ds= 0 0≤ t ≤ T . (4.6)

We now take a more direct route then in [13]. We want to prove that ifξ0 ∈ R⊥∞ thenξ = 0.
We know that condition (4.6) holds for the solution of (4.4), for everyt > 0. The idea now is to
take the Laplace transform ofγ1(b? y), which must be zero, and to use this to deduce thaty = 0.
Unfortunately however we cannot apply an element ofH−1 to e−λt , which is not zero fort = 0.
We bypass this problem by applyingγ1(b?y to [e−λt −e−σt ] whereσ ∈ IR is fixed (large enough).
We first useξn → ξ0, ξn regular, so thatγ1(b? y) converges to zero inH−1 and (the first integral
denotes duality pairing and? denotes the convolution)

0 =
Z +∞

0
[e−λt −e−σt ]γ1(b(·)?y(·;ξ0)) = lim

Z +∞

0
[e−λt −e−σt ]γ1(b?y(t;ξn)) .

This equality makes sense when the pairing is betweenH1
0(0,T) andH−1(0,T) but it is easy to see

that the limit forT →+∞ exists provided thatℜeλ andσ ∈ IR are large enough.
For ξn regular the second integral is easily computed

γ1
{

b̂(λ)[λI − b̂(λ)A]−1ξn− b̂(σ)[σI − b̂(σ)A]−1ξn
}

=
[

σ
b̂(σ)

− λ
b̂(λ)

]
γ1

{(
λ

b̂(λ)
I −A

)−1[
σ

b̂(σ)
I −A

]−1

ξn .

}

It is known thatγ1 when applied to elements of the domain ofA is given by−D∗A so that the
last expression is a continuous function ofξ: its limit for ξn → ξ0 is

[
σ

b̂(σ)
− λ

b̂(λ)

]
γ1

{(
λ

b̂(λ)
I −A

)−1[
σ

b̂(σ)
I −A

]−1

ξ0 .

}

and, as we noted, this is zero. Hence we have

γ1

(
λ

b̂(λ)
I −A

)−1

Ξ = 0, Ξ = [σI − b̂(σ)A]−1ξ0 ∈ domA.

This equality holds for everyλ ∈C with the exception of a discrete set, whereλ/b̂(λ) takes
values in the spectrum ofA and a suitable but fixed value ofσ.

We recall that̂b(0) > 0 andb̂(λ) is real forλ real. Hence, any positivez2 (close to zero) has
the formλ/b̂(λ) for λ on a suitable interval of the real axis. It follows that for such values ofz,
hence for everyzby analytic continuation, we have

γ1(z2I −A)−1Ξ0 = 0.

Now, ŵ(λ) = (z2I−A)−1Ξ0 is the Laplace transform of the solutionw(t) of thewaveequation (1.3)
with
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• homogeneous Dirichlet conditions:γ0w(t) = 0 whereγ0 is the trace onΓ sincew(0) = Ξ0 ∈
domA, wt(0) = 0.

• and, at the same time, withγ1w(t) = 0.

From [11, Cap. I, Cor. 5.1] we see thatw(t) = 0, henceΞ = 0 so that alsoξ0 = 0, as wanted.
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