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1. Problem set up

The peritoneal dialysis is a therapy to purify blood and to extract fluid from patients with
limited renal functions. Blood purification is obtained by exchanges of chemicals between blood
and a dialyzing solution injected in the peritoneal cavity, namely the interstices of the viscera.
Roughly speaking, the exchanges of chemicals take place across the membrane that lines the walls
of the abdominal cavity and encloses the viscera, called peritoneum or peritoneal membrane.

Many works have been published in medical literature to describe exchanges of chemicals
during PD with mathematical equations, for example we mention [6, 12, 13, 15]. The models that
are proposed are actually very similar, indeed they come from equations describing exchanges of
many chemical species across a membrane separating two solutions with different concentrations.
The application of the mass conservation principle allows to describe the evolution in time of
the chemical species into account by means of a system of ordinary differential equations which
represents the state equation for our optimization strategy.

1.1 A mathematical model for PD
During PD therapy, the exchange of chemicals takes place through the net of capillaries within

the folded peritoneal membrane. For this reason the geometrical modeling of the domain to account
for spatial variations would be extremely difficult. A space lumped model, in which the variations
in space are neglected, looks therefore more suitable to study the kinetics of chemicals during the
therapy (see figure 1 for a synoptic description of the model).

Our model exhibits one compartment accounting for the body, denoted by the index (b), and
one for the peritoneal cavity of the patient, (d), that are separated by a semipermeable membrane
that represents the peritoneal membrane. The latter compartment is filled by a solution of m chemi-
cals, denoted by the indices i = 1,2, . . . ,m,. Assuming that the concentrations are uniform in space,
the physical quantities of interest are the volume of the solution and the total amount of each solute
in the two compartments, namely Vb,Vd ,Vbcb,i,Vdcb,i, where cb,i,cd,i are the concentrations (mass
of solute per volume of solution). The interaction between the two compartments is governed by
the equations prescribing the flux of dialyzing fluid, Jv, and of chemical species, Js,i, across the
membrane. A well accepted mathematical model for these fluxes is due to Kedem and Katchalsky
[7, 8]. In this model the membrane is characterized by a set of pores that allow the exchange of
fluid and of chemical species between the two compartments. The pores can be subdivided in dif-
ferent classes that we denote by the index j = 1, . . . , p, depending on their size. Then, we introduce
Lp,Pi, the hydraulic conductivity and permeability of the membrane. Let us denote with L p, j,Pi, j
the corresponding quantities associated to the jth class of pores. Furthermore let si, j be the sieving
coefficients of the membrane relative to jth class of pores with respect to the ith molecule. However,
in what follows we will use the reflection coefficients σi, j = 1− si, j (the complementary of si, j with
respect to the unity), which determine the ratio of molecules that can sieve across the membrane.
The Kedem-Katchalsky equations read as follows,

Jv, j = Lp, j([p]− ∑
i=1,m

σi, j[πi]), Jv = ∑
j=1,p

Jv, j, (1.1)

Js,i, j = Pi, j[ci]+ Jv, j(1−σi, j)〈cb,i,cd,i〉 , Js,i = ∑
j=1,p

Js,i, j , (1.2)
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where, in this context, 〈cb,i,cd,i〉 is the average concentration inside the membrane and [c] =

cb − cd , [p] = pb − pd , while πi = RTci, being R and T be the gas constant and the absolute
temperature, according to Van’t Hoff law, [3]. By plugging the definitions of Jv and Js,i into the
mass conservation principle, we end up with a system of M = 2m + 2 ordinary differential equa-
tions that describe the rate of change of the unknowns Vb,Vd ,Vbcb,i,Vdcd,i, i = 1, . . . ,m by means of
expressions derived from equations (1.1) and (1.2). If we denote the rate of change of the variables
at hand with dtVb,dtVd ,dtVbcb,i,dtVdcd,i) we have,























































dtVb = − ∑
j=1,p

{

Lp, j ·S · ([p]−RT ∑
i=1,m

σi, j[ci])

}

+ Jvlymph

dtVd = ∑
j=1,p

{

Lp, j ·S · ([p]−RT ∑
i=1,m

σi, j[ci])

}

+u(t)− Jvlymph

dt(Vbcb,i) = − ∑
j=1,p

{

Pi, j[ci]+ Jv, j(1−σi, j)〈cb,i,cd,i〉
}

·S+qi +Kri, i = 1, . . . ,m

dt(Vdcd,i) = ∑
j=1,p

{

Pi, j[ci]+ Jv, j(1−σi, j)〈cb,i,cd,i〉
}

·S, i = 1, . . . ,m

(1.3)

where S represents the effective surface of the peritoneal membrane, Jv lymph takes into account the
drainage due to the lymphatic system, qi represents the generation rate of the ith molecule inside
the body, Kri represents the residual renal function and u(t) is a source term that takes into account
of the volume of fluid that is periodically injected and extracted from the peritoneal cavity by the
pump. The system of equations (1.3) is the state equation of our optimal control problem and the
function u(t) is the control. Before proceeding, we introduce an abridged notation for the state
equation. We denote with x = [Vb,cb,i,Vd ,cd,i] ∈ R

M , and with f(x,u) ∈ R
M the right hand side

of (1.3). Furthermore, the derivative with respect to time of a variable v(t) will be represented
concisely with v̇ = dt v. As a result of that, the state equation will be thus rewritten as ẋ = f(x,u)

and its well posedness will be discussed later on.

1.2 Definition of the control u(t)

Blood purification in PD is obtained by exchanges of chemicals between blood and a solution
injected in the peritoneal cavity, called dialyzing fluid. The solution in the peritoneal cavity is
periodically replaced by injecting or extracting the dialyzing fluid from the patient, through an
external pump (figure 1 shows a simplified scheme of the process). The idea that lays at the basis
of this work is thus to devise a procedure to find for each patient the profile of injections and
extractions that ensures the best blood purification.

The amount of fluid injected or extracted from the peritoneal cavity in a given time is de-
termined by the pump flow rate u(t). We observe that the function u(t) is a piecewise constant
function that can assume values in the set {U,0,−U} corresponding to the injection, dwell (the
part of the PD cycle when the dialyzing fluid rests into the peritoneal cavity) and extraction modes,
being U the nominal flow rate of the pump. Indeed, the degrees of freedom of our control are the
instants when the pump switches to one mode to the other. In order to define u(t), we introduce a
suitable partition of the time interval corresponding to the duration of the therapy. This partition
represents the subdivision of the therapy in cycles and each cycle then subdivided in subintervals
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Figure 1: A synoptic description of peritoneal dialysis

corresponding to injection, dwell and extraction. Let us denote with N the number of cycles as-
sociated to the therapy, then we introduce Ii = [Ti,Ti+1], with i = 1, · · · ,N, the interval associated
to each injection-dwell-extraction cycle and let be TN+1 = T1 +Ttot , being Ttot the total duration of
the therapy. Each cycle should be further subdivided in the dwell phase (characterized by u(t) = 0
for t ∈ [Ti, t ′i ] where t ′i is the switching instant between dwell and extraction), the extraction phase
(characterized by u(t) =−U for t ∈ [t ′i , t ′′i ] where t ′′i is the switching instant between extraction and
injection) and the injection phase (characterized by u(t) = U for t ∈ [t ′′i , t ′′′i = Ti+1] where t ′′′i is the
switching instant between injection and dwell). Finally, any admissible control u(t) should satisfy
the following constraints:

(a) the maximal duration of the therapy is fixed TN+1 −T1 = Ttot

(b) the dialyzing fluid in the peritoneal cavity should not exceed the maximal capacity, denoted
with Vmax:

U(t ′′′i − t ′′i ) ≤Vmax (1.4)

(c) the maximal amount of dialyzing fluid, denoted with Vtot can not be exceeded:

U
N
∑
i=1

(t ′′′i − t ′′i ) = Vtot (1.5)

(d) during the dwell phase the peritoneal cavity should be completely filled:
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U(t ′′i − t ′i) = U(t ′′′i − t ′′i )

This constraint allows to eliminate N degrees of freedom because it determines

t ′′i =
t ′′′i + t ′i

2

It is clear that the function u(t) can be uniquely identified by fixing a finite number of degrees of
freedom that correspond to the switching instants t = [Ti, t ′i ]Ni=1. The number of degrees of freedom
(dof) of t is thus dof= 2(N−1), since the initial and final times T1 and TN+1 are fixed. For the sake
of simplicity, we will renumber the degrees of freedom as follows, t = [t i]

dof

i=1 . We finally observe
that the inequality and equality constraints, (1.4) and (1.5) respectively, can be reformulated for the
vector of unknowns t. More precisely, equation (1.4) becomes,

gi(t) ≤ 0, i = 1, . . . ,N −1, with gi(t) = U
(

t2i+1 −
t2i + t2i+1

2

)

−Vmax (1.6)

while equation (1.5) becomes,

h(t) = 0, with h(t) = U
N−1

∑
i=1

(

t2i+1 −
t2i + t2i+1

2

)

−Vtot = 0. (1.7)

1.3 The control problem

Before setting up our control problem, we observe that, since the control u(t) is a discontinuous
function, the solution of the state equation is not defined in the classical sense. As a consequence
of that, we split the state equation on the subdomains Ii where the function u(t) is continuous and
in particular it is constant. More precisely, our state problem becomes,

Problem 1. Given x0, find x(t) ∈ (C0([T1,TN+1]))
M such that,

{

ẋ(t) = f(x(t),u(t)), t ∈ Ii, i = 1, . . . ,N
x(t = Ti) = x

∣

∣Ii−1(t = Ti), for i = 2, . . . ,N and x(t = T1) = x0.
(1.8)

The objective of our optimization strategy is to determine an admissible u(t) that ensures the
best blood purification. This corresponds to maximize the total amount of extracted toxins:

J(t) =

Z TN+1

T1

M
∑
i=1

wixi(t)|min[u[t](t),0]|dt :=
Z TN+1

T1
L(x,u)dt

where wi are suitable weights associated to the components of x and the notation u[t](t) reminds
that the control function u(t) is uniquely identified by the control vector t ∈ R

dof. The weights wi
are positive for the chemical species considered to be toxins while are null otherwise. The quantity
J(t) is thus our cost functional. We are now in position to set up our control problem.

Problem 2. Given N, find t∗ ∈ R
dof such that

J(t∗) = max
t∈T ⊂Rdof

J(t)
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under the constraints:

ẋ = f (x,u), t ∈ Ii with x(Ti) = x|Ii−1(Ti), for i = 2, . . . ,N and x(T1) = x0

T = {t ∈ R
dof | gi(t) ≤ 0 with i = 1, . . . ,N −1 and h(t) = 0}.

We notice that the number of cycles is a fixed parameter in our setting. However, a reduction
of the number of cycles can be achieved by collapsing a cycle (e.g. the ith cycle), that corresponds
to overlay the switching times ti ∈ [Ti,Ti+1]. Conversely, the optimization algorithm that we will set
up will not be able to increase the number of cycles. For the specific application of PD, this is not
a restriction because clinical evidence and theoretical observations show that the optimal choice of
N is the minimum integer that allows to exploit the available dialyzing fluid.

2. The optimal control strategy

Our aim is twofold: first of all we would like to build up an optimization algorithm that picks
up the best dialysis profile for a specific patient; the second step will be to develop a mathematical
method that allows to compare the efficacy of the different ways of performing PD which are
established in clinical practice (see [11] for a review on this subject). Indeed, this study would
be very useful in providing a rationale to put into evidence the general characteristics of the most
efficient therapy. The key point that has to be considered in both cases is the set up of a procedure
to compute the gradient of the cost functional J(t) with respect to the vector of degrees of freedom
t. In what follows, we describe in detail this procedure, which stands on classical results of optimal
control theory.

First of all, let us introduce a fictitious time τ and a piecewise linear map from τ to t, that is
denoted with t = M [t](τ), M [t] : [1,dof+1]→ [T1,TN+1] such that M [t](τ) = ti +(ti+1− ti)(τ− i).
This map satisfies, M [t](τ = i) = ti for i = 1, . . . ,dof+ 1 and this shows that the control u(t) can
be expressed as the transformation of a fixed function ū(τ) (we will denote with v̄ the functions
depending on the fictitious time τ). More precisely, u(t) = ū(M −1[t](t)) where ū(τ) is defined as
follows,

ū(τ) =











0, τ ∈ [2i−1,2i)
−U, τ ∈ [2i,2i+1/2)

+U, τ ∈ [2i+1/2,2i+1)

i = 1, . . . ,N

Secondly, we introduce the auxiliary state variables x̄M+i(τ), i = 1, . . . ,dof that satisfy the
following auxiliary state equations for τ ∈ [1,dof+1],

{ .
x̄M+i(τ) = 0
x̄M+i(1) = ti

⇒ x̄M+i(τ) = ti, τ ∈ [1,dof+1], i = 1, . . . ,dof (2.1)

We denote with X̄ = [x̄1, . . . , x̄M , x̄M+1, . . . , x̄M+dof]
T the new state vector and with F̄ = [ f1, . . . , fM ,0]T

the right hand side of the state equation modified according to (2.1). As a consequence of that, the
vector function X̄(τ) satisfies,
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Problem 3. Given X0, find X(τ) ∈ (C0([1,dof+1]))M+dof such that,
{ .

X̄(τ) = Ṁ [t](τ)F̄(X̄,u), τ ∈ Īi = (i, i+1), i = 1, . . . ,N,

X̄(τ = i) = X̄|Īi−1(τ = i), i = 2, . . . ,N and X̄(τ = 1) = X0.
(2.2)

By virtue of the identification between the degrees of freedom ti and the auxiliary state vari-
ables x̄M+i we can write M [t](τ) = M [x̄M+i](τ). We observe that the degrees of freedom of the
control now appear as initial conditions of the state vector and this will be very useful in order to
derive a computable expression of the gradient of J(t) with respect to the degrees of freedom t,
under the constraint represented by the state equation. Let us now establish a necessary condition
that characterizes the optimal control function u[t∗](t). By applying the optimal control theory, and
in particular the necessary conditions for Lagrange and Bolza problems (see for example [1], Ch.5,
Th.5.1), we observe that the optimal control vector t∗ satisfies the following property.

Property 1. Given the augmented functional JA(t),

JA(t) =
dof

∑
i=1

Z i+1

i

{

L(X̄, ū)Ṁ [x̄M+i]+ λ̄T
(Ṁ [x̄M+i]F̄(X̄, ū)−

.

X̄)
}

dτ (2.3)

there exists a dynamic multiplier λ(τ) ∈ (C0(1,dof+1))M+dof such that ∇t JA(t∗) = 0, where λ(τ)
is the backward solution of the following system of equations,











.

λ̄ = −∇X̄H(X̄, ū, λ̄), τ ∈ Īi = (i, i+1)

λ̄(τ = i+1) = λ̄|Īi+1(τ = i+1) for i = dof−1, . . . ,1 and λ̄(dof+1) = 0
(2.4)

being H(X̄, ū, λ̄) the Hamiltonian function associated to our control problem, precisely,

H(X̄, ū, λ̄) = Ṁ [x̄M+i]{L(X̄, ū)+ λ̄T F̄(X̄, ū)}.

A consequence of property 1 is that the optimal control t∗ lays in the set of the stationary
points of JA. Consequently, we aim to set up a mathematical method that identifies the vectors t
such that ∇t JA(t∗) = 0. In absence of more restrictive or sufficient conditions for optimality, we
will identify t∗ with the maximizer of JA(t). In order to derive a computable expression of ∇t JA(t)
we observe that, by means of standard integration by parts into (2.3) we obtain,

JA(t) =
dof

∑
i=1

Z i+1

i

{

Ṁ [x̄M+i]L(X̄, ū)+ Ṁ [x̄M+i]λ̄
T F̄(X̄, ū)+

.

λ̄
T

X̄)

}

dτ

+
dof

∑
i=1

{λ̄T
(i)X̄(i)− λ̄T

(i+1)X̄(i+1)}

Let now be dti, i = 1, . . . ,dof an infinitesimal perturbation on the control parameters and let
dX̄ j(τ), j = 1, . . . ,M +dof be the corresponding perturbation on X̄. We observe that the resulting
perturbation on JA is,

dJA =
dof

∑
i=1

Z i+1

i
{∇X̄H(X̄, ū, λ̄)+

.

λ̄
T
(τ)}dX̄(τ)dτ+

dof

∑
i=1

{λ̄T
(i)dX̄(i)− λ̄T

(i+1)dX̄(i+1)} (2.5)
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and by substituting (2.4) into (2.5) we obtain dJA = λ̄T
(τ = 1)dX̄(τ = 1). In order to determine

∇t JA(t) we remind that dX̄ j(τ = 1) = 0, j = 1, . . . ,M (because the initial conditions of the physical
state variables in (1.8) are fixed and thus independent from the vector t) and that d X̄ j(τ = 1) = dti,
j = M + i, i = 1, . . . ,dof (according to the definition of the auxiliary state variables in (2.1)). By
replacing the previous expressions into (2.5) we finally obtain,

dJA = λ̄T
(τ = 1)dX̄(τ = 1) =

dof

∑
i=1

λ̄M+i(τ = 1)dti,

that is
∂JA
∂ti

= λ̄M+i(τ = 1), i = 1, . . . ,dof. (2.6)

This result will be applied in the next section in order to set up a maximization algorithm of the
functional JA(t).

3. Numerical algorithms

Let us consider the original formulation of our control problem, that is problem 2. We ob-
serve that the determination of the optimal function u[t∗](t) is restricted by two types of constraint:
a dynamic constraint represented by equation (1.8) and some inequality and equality constraints
gi(t) ≤ 0, h(t) = 0 defined in (1.6) and (1.7) respectively, which represent a restriction of the space
of the admissible controls, T . On one hand, by means of property 1 it has been possible to take
into account of the dynamic constraint, with the introduction of the augmented functional JA(t)
and of the dynamic multiplier λ̄(τ). On the other hand, the problem of enforcing the algebraic
constraints (1.6) and (1.7) is a classical issue in the theory of constrained optimization. Indeed
many general algorithms has been developed in order to treat such problems, for instance we men-
tion sequential quadratic programming and augmented Lagrangian methods (see for example [10]
for an overview). According to the fact that we have already applied an augmented Lagrangian
approach for the treatment of dynamic constraint set by (1.8), we apply the augmented Lagrangian
method (see [14] and in particular [2]) in order to consider the algebraic constraints (1.6) and (1.7).
Here, we would like to describe the main steps of the procedure that we have set up. According
to property 1, our original control problem has been reformulated as the maximization of JA(t) de-
fined in (2.3) under algebraic constraints. Starting from this basis, we consider the following basic
maximization algorithm inspired to the augmented Lagrangian method.

Algorithm 1. Given q(0), p(0)
i , i = 1, . . . ,N −1 and c ≥ 0, for k = 1,2,3, . . . find t(k) such that,

JAA(t(k)) = max
t∈T

JAA(t)

where,

JAA(t) = JA(t)+q(k)h(t)+
N−1

∑
i=1

p(k)
i γ(k)

i (t)+ r(k)

(

h2(t)+
N−1

∑
i=1

(γ(k)
i (t))2

)

q(k+1) = q(k) +2r(k)h(t(k)), p(k+1)
i = p(k)

i +2r(k)γ(k)
i (tk), r(k+1) = cr(k)

γ(k)
i = max

[

gi(t);−
p(k)

i
2r(k)

]
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For the initialization of the algorithm we assume to start from an admissible point t(0) internal to T
and according to that we chose p(0)

i = 0 and q(0) as the projection of ∇tJA(t(0)) along the direction
normal to h(t) in the point t(0), namely,

q(0) = −
∇tJA(t0) ·∇th(t0)

‖∇th(t0)‖2
.

This expression can be calculated by computing the gradient ∇th(t(0)) and by applying (2.6) to
approximate ∇tJA(t(0)) with numerical techniques. Secondly, to solve the maximization problem
that arises at each iteration, we consider the line search method (see for example [4, 9, 10]), because
it exploits the information on the gradient of the functional to maximize. This information is
available in our case since ∇th(t) and ∇tgi(t), i = 1, . . . ,N −1 are easily calculated, while ∇tJA(t)
can be numerically approximated exploiting (2.6). Efficient implementations of the line search
method are available in the Matlab optimization toolbox. To apply such algorithm it is necessary
to compute the functional JAA(t) and its gradient ∇tJAA(t) at a given point t. We observe that,

∇tJAA(t) = ∇tJA(t)+q(k)∇th(t)+
N−1

∑
i=1

p(k)
i ∇tγ

(k)
i (t)+2r(k)h(t)∇th(t)+2r(k)

N−1

∑
i=1

γ(k)
i (t)∇tγ

(k)
i (t)

The key point is the approximation of ∇tJA(t) with numerical techniques. The main steps of this
method are reported below.

Algorithm 2. Given t ∈ R
dof:

compute X̄h, the numerical solution of (2.2);

compute λ̄h, the numerical solution of (2.4), where we have replaced X̄ with X̄h into ∇X̄H(X̄, ū, λ̄);

compute ∂JA
∂ti = λ̄h,M+i(τ = 1), i = 1, . . . ,dof.

For the numerical solution of the system of ordinary differential equations we apply high order,
adaptive Runge-Kutta methods. Precisely, we consider the so called DOPRI5 method (see [5]) im-
plemented in Matlab in the subroutine ode45 . In the following section we will apply the numerical
methods presented for the optimization of PD therapy profile to realistic clinical cases.

4. Applications

In this section we discuss the application to PD of the optimization strategy that we have set
up. As already mentioned, we address several objectives. First of all, we aim to apply our opti-
mization strategy in order to identify, for a specific patient, the sequence of cycles that maximize
the extraction of toxins. Let us consider the following data that characterize the PD therapy that
patients with renal disease receive daily. The duration of the therapy is fixed to Ttot = 12 hours
(720 minutes), the available quantity of dialayzing fluid is Vtot = 8 liter and the maximal volume
that can be injected into the peritoneal cavity is Vmax = 2. Starting from these data we pick up
randomly one therapy in the set of the admissible ones. This therapy is represented in figure 2
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(left) in terms of volume of dialayzing fluid, V (t), that is present at each time in the peritoneal
cavity. We observe that V (t) :=

R t
T1

u(s)ds with t ∈ (T1,TN+1] is the integral function of the pump
flow rate. Furthermore we consider realistic physiological data for the definition of the parameters
that appear in the state equation (1.3). These parameters are reported and determined on the basis
of clinical measurements in [6]. We apply our optimization algorithm starting from the therapy
described in figure 2 on the left, and on the right we show the profile of V (t) corresponding to the
optimal solution obtained when the algorithm has converged satisfying a tolerance equal to 10−2

on the relative incremental of t. The cost functional, which is defined as the amount of urea ex-
tracted during the therapy, has increased from 10.21 grams to 11.30 grams which corresponds to
a sensible improvement of 10.12 %. A similar optimal solution is obtained starting from different
initial guesses of the therapy profile. This observation confirms that our algorithm is well suited
for the identification of the optimal therapy for a specific patient. Furthermore, we observe that the
optimal solution exploits the maximal admissible volume, Vmax, at each cycle. As a consequence of
that the optimal therapy features the minimal number of cycles that is sufficient to exploit the avail-
able total volume of dialayzing fluid, which is equal to the smallest N ∈ N such that N ≥Vtot/Vmax.
On the other hand the duration of each cycle is not uniform.
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Figure 2: Initial (left) and final (right) therapy profiles in the test of the optimization strategy.

Actually, we notice that the standard PD therapy, which is characterized by cycles that exploit
the maximal volume, Vmax, and of uniform period, equal to Ttot/N, turns out to be very similar
the optimal one. A slight margin of improvement can be obtained by tuning the period of the
cycles. This observation is confirmed by the analysis of the gradient ∇tJA(t+), where t+ is the
set of control parameters that characterize the standard PD therapy. For this study, we consider
the following data: Vtot = 10 liter, Vmax = 2 liter, Ttot = 7 hour and N = 5. In table 1 we show
the gradient of JA with respect to the instants t j j = 1, . . . ,3(N − 1) that identify the standard
dialysis profile, which are also put into evidence in the scheme of table 1. We observe that the
gradient ∇tJA(t+) can be split in two components, denoted with ∇tJA,1(t+) and ∇tJA,2(t+) such
that ∇tJA(t+) = ∇tJA,1(t+) + ∇tJA,2(t+) and that are reported in table 1. The first one, namely
∇tJA,1(t+), puts into evidence that it is possible to improve the cost functional by considering a
variable cycle period. In particular, since the gradient is positive, the cycles at the beginning of
the therapy should be longer than the ones at the end of it. The second component of the gradient,
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namely ∇tJA,2(t+), shows that an increment of the cost functional can be achieved by increasing the
volume that is exchanged at each cycle. Moreover, we observe that the components of ∇tJA,2(t+)

are almost double (in absolute value) with respect to the ones of ∇tJA,1(t+). This means that the
cost functional JA is more sensitive to variations in the volume exchanged at each cycle than to
variations of the period of the cycle. However, for the specific therapy at hand, the inequality
constraints (1.4) do not allow to further increase the volume exchanged at each cycle because the
maximal peritoneal capacity, Vmax can not be exceeded. In other words, the component ∇tJA,2(t+)

can not be exploited for the improvement of JA. To sum up, this analysis shows that the standard
way to perform PD therapy (repeated cycles with similar characteristics) is quasi optimal, in the
sense that it provides the optimal repartition of the dialyzing fluid among cycles but it can be
enhanced by adjusting the repartition among the cycles of the available time for the therapy.

Table 1: The gradient of JA with respect to the instants t j, j = 1, . . . ,3(N −1)

t6 t10 t12t3 t4t1 t7 t9

t2 t5 t8 t11 t

V(t)

t1 t2 t3 t4 t5 t6
dJA
dti -0.0023 0.0023 0.0069 -0.0024 0.0024 0.0074

t7 t8 t9 t10 t11 t12
dJA
dti -0.0025 0.0025 0.0077 -0.0026 0.0026 0.0079

t1 t2 t3 t4 t5 t6
dJA,1
dti 0.0023 0.0023 0.0023 0.0024 0.0024 0.0024

t7 t8 t9 t10 t11 t12
dJA,1
dti 0.0025 0.0025 0.0025 0.0026 0.0026 0.0026

t1 t2 t3 t4 t5 t6
dJA,2
dti -0.0046 0.0 0.0046 -0.0048 0.0 0.0050

t7 t8 t9 t10 t11 t12
dJA,2
dti -0.0050 0.0 0.0052 -0.0052 0.0 0.0053
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