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1. Introduction

In this paper we consider a control system of the type:

ẋ = f (t,x,u), u ∈U (1.1)

where x ∈ R
n is the state, U ⊂ R

q is the control space and f is the controlled dynamic. Given
a target S ⊂ R

n, a running cost L(t,x,u), a final cost ψ(t,x) and an initial condition (t0,x0), we
consider the optimal control problem in Bolza form. We define in the usual way the value function
V (t0,x0) to be the infimum of the problem with initial condition (t0,x0). It is well known that, under
suitable conditions, V satisfies the Hamilton-Jacobi-Bellman equation in viscosity sense [1] and it
is possible to isolate V as the unique solution. The proof is based on the dynamic programming
principle.

Therefore given a function W , it is possible to determine if W coincide with the value function,
checking if it is a viscosity solution to the HJB equation. This type of theorems, called verification
theorems, are useful, for example, when a candidate value function is produced by means of the
construction of a synthesis [13]. It is then natural to ask for minimal conditions under which a
function W coincides with the value function. If we know that W was obtained via a synthesis
then the inequality W ≥ V is granted by construction, thus we take this assumption. Then, for
W to coincide with the value function, we prove it is sufficient that, outside a rectifiable set of
codimension one, both W is differentiable and it satisfies a Hamilton-Jacobi-Bellman inequality.
Moreover, we make use of only some weak continuity assumptions, already used in [13] to prove
optimality of a regular extremal synthesis, see Theorem 1 and Theorem 2 for details. A first result in
this direction can be found in [2], where the HJB inequality is asked outside a countable collection
of Lipschitz continuous manifolds of positive codimension. Notice that, for an optimal control
problem, the value function is indeed differentiable outside a closed rectifiable set of codimension
one, see [4].

We start considering the main assumptions for the problem and presenting two technical lem-
mas, one of which dealing with the cardinality of the intersections between admissible trajectories
and a rectifiable set.

The first case we treat is the problem of finite time. We define a value function as the infimum,
over all admissible trajectories reaching the target in finite time. The main result of this part is
Theorem 1 which permits to verify if the function W coincides with the value function. In particular
we need the differentiability of W outside a rectifiable set and the fact that W must satisfy a HJB
differential inequality in the same set.

Next, we consider the infinite time problem. In this case the value function (5.1) is defined
as the infimum of the cost functional over all admissible trajectories reaching the target in infinite
time. The main result of this section is Theorem 2 which gives sufficient conditions on the function
W to ensure the equality between W and the value function. In this case, we consider a suitable
neighborhood S1 of the target S and we suppose that the final cost ψ is defined on S1 in order to
give sense to the limit in the definition of the value function (5.1). As a corollary of Theorem 1 and
Theorem 2 we can treat a mixed case (see also [12]), considering at the same time the trajectories
reaching the target both in finite time and in infinite time.
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A key ingredient for Theorem 1 and Theorem 2 is the positiveness of the Lagrangian L, in order
to prevent some bad phenomena such as the permanence of the system for an arbitrary interval of
times in a region where L is negative making the value function equal to −∞.

Acknowledgements
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2. Preliminaries

We consider a control system:

ẋ(t) = f (t,x(t),u(t)), (t,x) ∈ Ω, u(t) ∈U (2.1)

where

(A-1) Ω is an open and connected subset of R×R
n.

(A-2) U is a non-empty subset of R
q, for some q ≥ 1, q ∈ N.

(A-3) U = Lp(R;U) with 1 ≤ p < +∞ is the set of admissible controls.

(A-4) f : Ω×U →R
n is measurable in t, continuous in (x,u), differentiable in x and, for each u∈U ,

Dx f (·, ·,u) is bounded on compact sets. Moreover there exists ϕ1 : R → R
+ integrable and

for every K, compact subset of Ω, there exist a modulus of continuity ωK and a constant
LK > 0 such that, if (t,x) ∈ K and (t,y) ∈ K, then





| f (t,x,u)− f (t,y,u)| ≤ ωK(|x− y|)

( f (t,x,u)− f (t,y,u)) · (x− y) ≤ LK |x− y|2

| f (t,x,u)| ≤ LK(ϕ1(t)+ |u|p).

(2.2)

We consider a function L : Ω×U → R and assume:

(A-5) L is measurable in t and continuous in (x,u). Moreover, there exist ϕ2 : R → R
+ integrable

and, for every R ≥ 0, CR ≥ 0 such that

|L(t,x,u)| ≤CR(ϕ2(t)+ |u|p), |(t,x)| ≤ R (2.3)

In this paper we indicate with x( · ;u, t0,x0) the solution to (2.1) such that x(t0;u, t0,x0) = x0.
Define the value function:

V (t0,x0) := inf
u∈U

(T,x(T ;u,t0,x0))∈S

{
Z T

t0
L(s,x(s;u, t0,x0),u(s))ds+ψ(T,x(T ;u, t0,x0))

}
(2.4)

where S - the target - is a closed subset of R×R
n contained in Ω, ψ : S → R is the final cost. Now

we need the following definitions (introduced in [13]):
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Definition 1. We call a function W : R
n → R∪{+∞} weakly upper semicontinuous (w.u.s.c.) at a

point x if liminfy→x limsupz→yW (z) ≤W (x). Moreover W is w.u.s.c. if it is w.u.s.c. at every point
of R

n.

Remark 1. A function W : R
n → R∪{+∞} is w.u.s.c. at x if and only if, for any sequence δ j > 0,

δ j → 0 there exist a sequence x j → x and a sequence ε j > 0 such that

∣∣y− x j
∣∣ ≤ ε j ⇒ W (y) ≤W (x)+δ j. (2.5)

Note that we can choose 0 < ε j ≤ δ j.

Definition 2. Suppose that we have a time-varying Lipschitz-continuous vector field X on R
n and

W : Ω → R∪ {+∞}. We say that W has the no downward jumps property (NDJ) along X if
for any [a,b] 3 t 7→ γ(t), solution to γ̇(t) = X(t,γ(t)) such that (t,γ(t)) ∈ Ω ∀t ∈ [a,b], we have
liminfh↓0W (t −h,γ(t −h)) ≤W (t,γ(t)), whenever t ∈]a,b].

Definition 3. A subset A of Ω is an n-dimensional rectifiable set if there exist A1 and A2 such
that A = A1 ∪A2, A1 is a finite or countable union of connected Lipschitz submanifolds of positive
codimension, and H n(A2) = 0, where H k is the k-dimensional Hausdorff measure.

3. Two lemmas

In this section we present two technical lemmas.

Lemma 1. Fix an element ω ∈ U, t ′ < t ′′ and x ∈ R
n with (t ′′,x) ∈ Ω. Assume that there exists

W , an open neighborhood of x in R
n, such that ζy(·), the solution to ζ̇y(t) = f (t,ζy(t),ω) with

ζy(t ′′) = y, is defined on [t′, t ′′] for any y ∈ W and (t,ζy(t)) ∈ Ω ∀t ∈ [t ′, t ′′]. Let A be an n-
dimensional rectifiable set.

Then for a.e. y ∈ W the set By := {t ∈ [t ′, t ′′] : (t,ζy(t)) ∈ A} is finite or countable.

Proof. We can write A = A1 ∪A2, where A1 = ∪ jM j and {M j} j∈J is a finite or countable family
of connected submanifolds of R

n+1 of codimension d j > 0, and H n(A2) = 0. After replacing each
M j by a finite or countable family of open submanifolds of Mj, we may assume that the M j are

embedded. DefineW̃ :=]t ′, t ′′[×W and let Φ be the map W̃ 3 (t,y) 7→ (t,ζy(t))∈Ω. The Jacobian
of Φ is

JΦ =




1 0 · · · · · · 0

b Vζ(t; t ′,Id)


 (3.1)

where b is the column vector f (t,ζy(t),ω) and Vζ(t; t ′,Id) is the fundamental matrix solution to
the linear system

v̇(t) = −Dx f (t,ζy(−t + t ′ + t ′′),w) · v(t) (3.2)

such that Vζ(t ′; t ′,Id) = Id. So the determinant of JΦ is equal to the determinant of Vζ(t; t ′,Id),
which is equal to exp

R t
t ′ tr(−Dx f (s,ζy(−s + t ′ + t ′′),ω))ds, by Liouville’s theorem (see [9]). In
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particular det(JΦ) is strictly positive for any t ∈ [t ′, t ′′]. Moreover, by (A-4) tr(−Dx f ) is bounded
on compact sets and then there exist c > 0, C > 0 such that 0 < c ≤ det(JΦ) ≤C.

So Φ is a Lipschitz diffeomorphism. In particular we have H n(Φ−1(A2)) = 0. Now, for each
j, let us consider M̃ j := Φ−1(M j). It is a locally Lipschitz embedded submanifold of codimension
d j > 0. So we may suppose that M̃ j is locally described as the image of a bi–Lipschitz continuous
function ϕ j : U → R

n+1, where U is an open and bounded subset of R
m, with 1 ≤ m ≤ n.

First we suppose that m < n. We obviously have that H m(ϕ j(U)) ≤ LH m(U) < +∞ where L
is the lipschitz constant for ϕ j and so (see [5]) H n(ϕ j(U)) = 0. This implies that H n(Π(M̃ j)) = 0.
Since Ln coincides with H n in R

n (see [5]), we conclude that L n(Π(M̃ j)) = 0.
So we may suppose that m = n. We define the set

Z j :=
{

(t,y) ∈ M̃ j : ϕ j not differentiable atx = ϕ−1
j (t,y)

}
.

By Rademaker theorem, we obtain that H n(Z j) = 0 and so Ln(Π(Z j)) = 0. We now consider the
function

Π◦ϕ j : U → R
n,

the set
S j :=

{
u ∈U : Π◦ϕ j differentiable atuandD′(Π◦ϕ j)(u)not surjective

}

and the set
Z(1)

j := ϕ j(S j).

By Sard’s lemma (see [7]), L n(Π(Z(1)
j )) = 0. So the set

B := Π(Φ−1(A2))∪ (
[

j

Π(Z j))∪ (
[

j

Π(Z(1)
j ))

has Lebesgue measure 0 in R
n.

Let y ∈ W \B . Then (t,ζy(t)) 6∈ A2 if t ′ < t < t ′′. To obtain the thesis, it is sufficient to show
that, for each j, the set E j =

{
t ∈]t ′, t ′′[: (t,ζy(t)) ∈ M j

}
is at most countable. Fix j and suppose

t̄ ∈ E j. Then (t̄,ζy(t̄)) ∈ M j and (t̄,y) ∈ M̃ j. By the fact that y 6∈ B , we have ∂
∂t 6∈ TM̃ j

(t̄,y). This

fact permits to conclude that (t,y) 6∈ M̃ j if 0 < |t − t̄| < ε for ε sufficiently small. Therefore t is an
isolated point of E j and the lemma is proved. �

Lemma 2. Let g be a real-valued function on a compact interval [a,b]. Assume that there exists a
finite or countable subset E of [a,b] with the following properties:

(A-1) liminfh↓0
g(x+h)−g(x)

h ≥ 0 for all x ∈ [a,b[\E,

(A-2) liminfh↓0 g(x+h) ≥ g(x) for all x ∈ [a,b[,

(A-3) liminfh↓0 g(x−h) ≤ g(x) for all x ∈]a,b].

Then g(b) ≥ g(a).

For a proof of this lemma see [13, Lemma B.1].
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4. Problem with finite time

We indicate with ∂Q the topological boundary of an arbitrary Q ⊆ R×R
n.

Theorem 1. Suppose (A-1)-(A-5) hold. Let Q ⊆ Ω be an open subset containing S. Let W : Q → R

be a lower semicontinuous function verifying the NDJ property along every time-varying vector
field of the type f (t,x,u) with u ∈U fixed. Moreover we assume that, for each t, W (t, ·) is w.u.s.c.
and that:

i) W ≥V .

ii) W ≤ ψ on S.

iii) At every point (t,x) ∈ ∂Q one has

W (t,x) = sup
(s,y)∈Q

W (s,y).

iv) There exists an n-dimensional rectifiable set set A ⊆ Ω such that W is differentiable on Q\A
and satisfies

Ws(s,y)+ inf
ω∈U

{Wy(s,y) · f (s,y,ω)+L(s,y,ω)} ≥ 0 on Q\A.

v) L ≥ 0.

Then W = V on Q. If Q = Ω we can drop hypotheses iii) and v).

Proof. We have to prove that W ≤ V . Suppose by contradiction that there exists (t0,x0) ∈ Q such
that W (t0,x0) > V (t0,x0). Then there exists M ∈ R such that W (t0,x0) > M > V (t0,x0). So we can
find ε > 0, δ > 0 such that

V (t0,x0)+ ε ≤ M− ε (4.1)

and, by the lower semicontinuity of W ,

|x− x0| < δ ⇒ W (t0,x) > V (t0,x0)+ ε. (4.2)

We can find u∗ ∈ U such that x∗(·) := x(·;u∗, t0,x0) satisfies (T,x∗(T )) ∈ S and

Z T

t0
L(s,x∗(s),u∗(s))ds+ψ(T,x∗(T )) ≤V (t0,x0)+

ε
2

. (4.3)

Moreover, by [3, Théorèm IV.9], there exist h ∈ Lp([t0,T ]) and, for every η > 0, u] = u](η) ∈ U
such that ‖u] −u∗‖Lp([t0,T ]) ≤ η, u] piecewise constant, left continuous and

∣∣u]
∣∣ ≤ h a.e. Hence, if

we denote by x](·) the trajectory x(·;u],T,x∗(T )), for η sufficiently small, we have

∣∣∣∣
Z T

t0
[L(s,x](s),u](s))−L(s,x∗(s),u∗(s))]ds

∣∣∣∣ ≤
ε
2

(4.4)
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and ∣∣x](t)− x∗(t)
∣∣ <

δ
2

∀t ∈ [t0,T ]. (4.5)

Fix an interval ]t ′, t ′′] such that u](t)≡ ω in ]t ′, t ′′]. Suppose that (t,x](t)) ∈ Q ∀t ∈ [t ′, t ′′]. Let ζy(t)
be the trajectory associated to the constant control ω and such that ζy(t ′′) = y. By the fact that
d(∂Q,

{
(t,x](t)) : t ∈ [t ′, t ′′]

}
) > 0, we can find an open neighborhood W of x](t ′′) in R

n such that
(t ′′,y) ∈ Q ∀y ∈ W and {(t,ζy(t)) : t ∈ [t ′, t ′′]} ⊆ Q ∀y ∈ W . By Lemma 1, we have that for a.e.
y ∈ W the set By := {t ∈ [t ′, t ′′] : (t,ζy(t)) ∈ A} is at most countable.

Since W is w.u.s.c. for every fixed t, then for every δj → 0, δ j > 0 there exist x j → x](t ′′), and
0 < ε j ≤ δ j such that

∣∣x j − y
∣∣ ≤ ε j ⇒ W (t ′′,y) ≤W (t ′′,x](t ′′))+δ j. (4.6)

For j sufficiently big, we can find yj,
∣∣y j − x j

∣∣ ≤ ε j, such that By j is at most countable. Consider
the following function defined on [t′, t ′′]:

ϕ j(t) := W (t,ζy j(t))+
Z t

t ′
L(s,ζy j(s),ω)ds.

By the choice of y j and the hypotheses iv), ϕ j is differentiable a.e. with a nonnegative derivative.
By the lower semicontinuity of W and the NDJ condition, it follows that ϕ j verifies the hypotheses
of Lemma 2 and so ϕ j(t ′) ≤ ϕ j(t ′′). Thus

W (t ′,ζy j(t ′)) ≤W (t ′′,ζy j(t ′′))+
Z t ′′

t ′
L(s,ζy j(s),ω)ds. (4.7)

Now, using (4.6) and the fact that ζy j(t ′′) = y j we obtain

W (t ′,ζy j(t ′)) ≤W (t ′′,x](t ′′))+δ j +
Z t ′′

t ′
L(s,ζy j(s),ω)ds. (4.8)

Pass to the limit as j → +∞:

W (t ′,x](t ′)) ≤W (t ′′,x](t ′′))+
Z t ′′

t ′
L(s,x](s),ω)ds. (4.9)

First consider the case
{
(t,x](t)) : t ∈ [t0,T ]

}
⊆ Q. Summing (4.9) over each interval on which u]

is constant we have

W (t0,x
](t0)) ≤W (T,x](T ))+

Z T

t0
L(s,x](s),u](s))ds. (4.10)

Now, x](T ) = x∗(T ) by definition and so, using (4.2)-(4.3)-(4.4)

W (t0,x
](t0)) ≤ W (T,x∗(T ))+

Z T

t0
L(s,x](s),u](s))ds

≤ ψ(T,x∗(T ))+
Z T

t0
L(s,x](s),u](s))ds

≤ V (t0,x0)+
ε
2
−

Z T

t0
L(s,x∗(s),u∗(s))ds

+
Z T

t0
L(s,x](s),u](s))ds

≤ V (t0,x0)+ ε < W (t0,x
](t0)).
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This is a contradiction.
Suppose now

{
(t,x](t)) : t ∈ [t0,T ]

}
6⊆ Q. Define

τ̂ := inf
{

t ≤ T : (s,x](s)) ∈ Q ∀s ∈ [t,T ]
}

. (4.11)

In particular (τ̂,x](τ̂)) ∈ ∂Q. Using the same argument to pass from (4.9) to (4.10), we obtain that
for every τ > τ̂

W (τ,x](τ)) ≤W (T,x∗(T ))+
Z T

τ
L(s,x](s),u](s))ds (4.12)

and so

W (τ,x](τ)) ≤ ψ(T,x∗(T ))+
Z T

τ
L(s,x](s),u](s))ds

≤ V (t0,x0)+
ε
2
−

Z T

t0
L(s,x∗(s),u∗(s))ds

+
Z T

τ
L(s,x](s),u](s))ds. (4.13)

Since L ≥ 0, we obtain for all τ > τ̂

W (τ,x](τ)) ≤ V (t0,x0)+ ε

≤ M− ε

< W (t0,x0)− ε. (4.14)

Passing to the liminf as τ → τ̂ and using the lower semicontinuity of W , we conclude

W (τ̂,x](τ̂)) < W (t0,x0)− ε (4.15)

and so by iii)
W (t0,x0) < W (t0,x0)− ε (4.16)

which is a contradiction. This concludes the proof of the theorem. �

The hypotheses of the positiveness of L is quite optimal as the next example shows. However,
it is sufficient that the system could not stay for too long in a region where the Lagrangian is
negative, so one can relax the assumption v) in this way.

Example 1. Consider the system ẋ = u, U = [−1,1] and U = L1(R;U), Ω = R
2, S = R×{0},

Q = R×]−1,1[ with the Lagrangian L(t,x,u) = u2 + x4 −6x3 + 7x2 (see Figure 1) and ψ ≡ 0 on
S. Since the Lagrangian is negative in a region where the system can stay for an arbitrary interval
of times, clearly the value function for this problem is equal to −∞. If W ≡C on Q with C negative
constant, then W verifies all the hypotheses of the Theorem 1, but v). In fact i), ii), iii) are obvious,
while iv) holds because L is positive on Q and W is differentiable on Q. So there exist infinitely
many functions W defined on Q verifying the hypotheses of Theorem 1, but v), which are different
from V .
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-20
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20

30

Figure 1: L(t,x,0)

5. Problem with infinite time

In this section we consider the control system (2.1) and assume that (A-1)-(A-5) hold with
0 ≤ CR ≤ C for some C > 0 and every R > 0. Moreover we suppose that the target S is a closed
subset of R×R

n which satisfies:

(∗) For any T > 0, there exists (t,x) ∈ S with t ≥ T .

Let S1 be an open neighborhood of S contained in Ω. Assume that the final cost ψ is defined
on S1 and, if d((t,x(t;u, t0,x0)),S)→ 0 as t →+∞, then the trajectory x(·;u, t0,x0) is definitively in
S1, that is:

(∗∗) there exists T > t such that (s,x(s;u, t0,x0)) ∈ S1 for all s ≥ T .

Define the value function V (t0,x0) as

inf
u∈U

d((t,x(t;u,t0,x0)),S)→0
as t→+∞

{
Z +∞

t0
L(s,x(s;u, t0,x0),u(s))ds+ limsup

t→+∞
ψ(t,x(t;u, t0,x0))

}
(5.1)

In other words, we consider only the trajectories that approach the target S in infinite time.
Notice that this condition does not imply that (T,x(T )) 6∈ S for every T ≥ t0.

We now prove a verification theorem for a function W defined on Q, where Q is an open subset
of Ω containing the target.

Theorem 2. Let Q ⊆ Ω be an open subset containing S. Let W : Q →R be a lower semicontinuous
function verifying the NDJ property along every time-varying vector field X of the type f (t,x,u)

with u ∈U fixed. Moreover assume that, for each t, W (t, ·) is w.u.s.c. and that:

i) W ≥V .

ii) W ≤ ψ on S1.
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iii) At every point (t,x) ∈ ∂Q one has

W (t,x) = sup
(s,y)∈Q

W (s,y).

iv) There exists a thin set A ⊆ Ω such that W is differentiable in Q\A and satisfies

Ws(s,y)+ inf
ω∈U

{Wy(s,y) · f (s,y,ω)+L(s,y,ω)} ≥ 0 in Q\A.

v) L ≥ 0.

Then W = V on Q. If Q = Ω we can drop hypotheses iii) and v).

The proof is eesentially similar to the proof of Theorem 1. For a complete proof of this theorem
see also [8].

Remark 2. If we assume that there exists η > 0 such that S + B(0,η) ⊆ S1, where B(0,η) is the
ball in R

n+1 centered in 0 with radius η, then hypothesis (∗∗) obviously holds. In fact suppose
d((t,x(t;u, t0,x0)),S)→ 0 as t →+∞. Then there exists T > 0 such that d((s,x(s;u, t0,x0)),S) < η

2

for all s ≥ T . So we can choose an element (t(s),y(s)) ∈ S in order to have

d((s,x(s;u, t0,x0)),(t(s),y(s))) <
η
2

for all s ≥ T . So the points (s,x(s;u, t0,x0)) ∈ S +B(0,η) ⊆ S1 for every s ≥ T .

Remark 3. We obtain a generalization of Theorems 1 and 2 considering the same problem (2.1)
with assumptions (A-1)-(A-4), but we accept at the same time all the trajectories that hit the target
in finite time or that tend to the target in infinite time. Obviously an analogous theorem as 1 and 2
holds.
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