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1. Introduction

The AdS/CFT correspondence [1, 2, 3] is the first explicit realization of the old idea that the
strongly coupled dynamics of a gauge theory has a description in terms of an effective theory
of strings. The correspondence also naturally implements the ’t Hooft large N expansion, thus
providing a verification of many ideas about gauge theories at large N. Despite its name, the cor-
respondence can be extended to non conformal gauge theories where we are naturally led to study
QCD-like theories. Flavors have been recently added to the correspondence, but the road to truly
realistic theories is still long. Classical supergravity solutions give a quite accurate description of
theories that are not pure YM theories, but contain infinite additional fields. It is a general ex-
pectation that classical supergravity alone cannot describe realistic gauge theories, which contain
higher spin glueballs. The dual of pure QCD is therefore expected to be a strongly coupled string
model. However, the supergravity duals provide many exactly solvable models exhibiting con-
finement and other phenomena typical of the pure gauge theory. Thus, even if not quantitatively
relevant for QCD, they provide a good laboratory for studying the mechanism of confinement and
the qualitative properties of QCD.

Considered the huge literature on the subject (for reviews see [4] and for more recent de-
velopments regarding non conformal theories [5, 6, 7]), here we will only discuss some recent
topics. In particular, we will focus on two main subjects. The first one (addressed in Section 3) is
the introduction of flavors in the AdS/CFT correspondence and the possibility, at least in a probe
approximation, of studying the mesonic spectrum. The addition of flavors is certainly a first step to-
wards more realistic theories. The probe approximation is a sort of quenched approximation where
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the effect of the glue on the dynamical quarks is included but the backreaction of the quarks is not.
The introduction of really dynamical quarks in the fundamental representation in the AdS/CFT
correspondence is still an important open problem. The second subject we will address (in Section
4) is the discussion of supergravity duals for N = 1 gauge theories. In this context, we will explore
in details the vacuum properties of the two known regular solutions (Klebanov-Strassler (KS) and
Maldacena-Nunez (MN)) [8, 9]. We have now an improved understanding of the IR dynamics of
the KS solution. Surprisingly enough, the KS and MN solutions are continuously connected by a
supergravity flow. We will discuss to which extent these solutions can be considered as convenient
toy models for N = 1 pure SYM. The last part of these lectures is a brief introduction to the rela-
tion of AdS-like supergravity solutions with (warped) string compactifications. The KS solution, in
particular, has been used for extra-dimensions phenomenology and cosmology. We refer to other
lectures in this school for a detailed discussion of string compactifications with fluxes and related
problems.

The material in these lectures should be understandable by readers knowing the very basic
facts about the AdS/CFT correspondence. We will try to be self-contained as possible but we will
be certainly not exhaustive. The reader will be referred to the appropriate literature when needed.
These lectures can be considered in a sense as a companion of [7].

2. Generalities about non conformal backgrounds

The reader is suppose to know the basic facts about the conformal case; a thoughtful intro-
duction to the AdS/CFT correspondence [1, 2, 3] can be found in [4]. In this Section, we will
briefly discuss the general philosophy of the gauge/gravity duality for the non-conformal case. We
will mostly proceed by examples, in order to emphasize the basic facts we will use in the follow-
ing. More details can be found in [4] and (for more recent developments about non-conformal
backgrounds) in [5, 6, 7].

The basic principle is: systems of D-branes in Type II string theory (or systems of M-branes
in M theory) admit a complementary description in terms of gauge theories on their world-volume
on one side and curved supergravity backgrounds on the other side. To apply the AdS/CFT corre-
spondence, the gauge theory of interest must be engineered on a stack of branes. The gravity dual
is then obtained as the near horizon geometry of the stack. More precisely, the near horizon limit
is obtained by sending α′ → 0, rescaling the dimensional parameters on the branes in a zooming
process and keeping the dimensionless parameters fixed.
Example 2.1: Consider N parallel D3-branes filling the four-dimensional space-time in a back-
ground of the form R(1,3) ×M6 in type IIB, where M6 is a non-compact Calabi-Yau. At low en-
ergies, the system is described by the gauge fields on the branes coupled to the massless fields of
Type IIB supergravity in the bulk. The low energy Lagrangian for the coupled brane/bulk system
schematically reads

− 1
8πgs

Z

d4x
√

gTr(F2)+
1

(2π)7α′4g2
s

Z

d10x
√

gR+ · · · (2.1)

The gauge group and the matter content of the world-volume theory depend on the manifold M6 and
are not always simple to determine. Roughly, the number of branes N will determine the average
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number of colors of the various group factors and gs will determine the average gauge coupling
g2

Y M = 4πgs. The string frame metric generated by a stack of D3-branes is

ds2 = h(r)−1/2dxµdxµ +h(r)1/2(ds2
6),

h(r) = 1+
4πgsNα′2

r4 . (2.2)

In this description the decoupling limit can be realized by sending α′ → 0 while keeping N and gS

fixed. The α′ → 0 limit will decouple closed string modes and excited open string modes. However,
one must be careful in doing this limit. The low energy dynamics of the gauge theory (moduli space
of vacua, Higgs phenomenon,...) is determined by open strings connecting different branes. For
example, we can Higgs the gauge group by separating the branes. The masses of the W-bosons are
of order ∆r/α′, where ∆r is the distance between the branes. We have to rescale distances in order
to keep these masses finite. We then send α′ → 0 keeping gs and r/α′ ≡ u fixed. In the limit we
have just described, we can discard the 1 in the expression (2.2) for h,

h(r) = 1+
4πgsN
α′2u4 → 4πgsN

α′2u4 (2.3)

This familiar trick eliminates the asymptotically flat region at infinity.
Example 2.2 (CFTs): a) for D3-branes in flat space, ds2

6 = dr2 + r2Ω5 and we obtain the familiar
metric

ds2 =

{

R2 du2

u2 +
α′2u2

R2 dxµdxµ +R2dΩ2
5

}

. (2.4)

The metric is the direct product of two spaces of constant curvature, AdS5 × S5, with the same
radius R2 =

√

g2
Y MNα′. The matching of parameters on the two sides of the correspondence reads:

4πgs = g2
Y M =

x
N

(2.5)

R2

α′ =
√

g2
Y MN =

√
x

where we defined the t’Hooft coupling x = g2
Y MN. The string theory is weakly coupled when N

is large and x � 1. The latter condition means that the large-N gauge theory is strongly coupled.
As well known, the double perturbative expansion of string theory, in powers of gs (strings loop)
and α′ (higher derivatives terms) is associated respectively with the 1/N expansion and the 1/x
expansion at fixed N.
b) The amount of supersymmetry can be reduced by placing D-branes in curved geometries. Since
the AdS/CFT correspondence focuses on the near brane region and every smooth manifold is lo-
cally flat, we will find new models only when the branes are placed at a singular point of the
transverse space [10, 11, 12, 13]. An interesting class of theories makes use of conifold singular-
ities. We place branes at the singularity of Ricci-flat manifolds C6 whose metric has the conical
form

ds2
C6 = dr2 + r2ds2

M5 . (2.6)

One can prove that C6 is Ricci-Flat if M5 is a five-dimensional Einstein manifold [11, 12]. The
AdS/CFT correspondence is then formulated with the background AdS5 ×M5, which is the near
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horizon geometry of the previous metric. Although some methods are known for particular cases,
no general way to derive the wold-volume theory from the geometry of M5 is known.
The gauge theory is maximally supersymmetric N = 4 SYM with gauge group SU(N) in case a)
and a less supersymmetric gauge theory depending on M5 in case b). The presence of an AdS5
factor implies that both theories are conformal. A word of caution is needed for the gauge group.
A stack of N D3 branes leads to a U(N) gauge theory; however, as well known [4], all abelian
factors are not described by the AdS/CFT correspondence.
Example 2.3 (The Black Brane): The extremal D3-branes can be replaced by black three-branes
[14]. In this case we can consider theories defined on a space-time with topology R3×S1 and break
conformal invariance and supersymmetry by compactification. The near horizon geometry of an
Euclidean black three-brane is given by,

ds2 = R2





(

u2
3

∑
i=1

dx2
i +u2

(

1− u4
0

u4

)

dτ2

)

+
du2

u2(1− u4
0

u4 )
+dΩ5



 (2.7)

The geometry has an horizon at u = u0. To avoid a conical singularity at u = u0, τ should be con-
sidered an angular variable with radius R0 = 1

2u0
. Since the world-volume topology is R3 ×S1, the

natural candidate for the dual gauge theory is N = 4 SYM with gauge group SU(N) on R3 × S1.
The metric admits a spin structure where fermions change sign along S1. Supersymmetry is bro-
ken, the fermions get masses through these boundary conditions and the scalars get masses through
loops of fermions. For R0 → 0 all fermions and scalars decouple and we are left with pure YM
in three-dimensions. This way, one obtains a non-supersymmetric and non-conformal theory in
three-dimensions that can be studied using a weakly coupled supergravity dual. We are obviously
more interested in four-dimensional theories. There is a refined version of this construction that
gives pure YM in four-dimensions [14]. In this case, one has to start with the (2,0) superconformal
theory in six dimensions, realized on the world-volume of a stack of M5 branes; the correspond-
ing M theory dual is AdS7 × S4. The four dimensional theory is obtained by compactifying two
dimensions. One can alternatively start with the reduction of the system to type IIA, a stack of D4
branes compactified on a circle. The IIA background is a black hole geometry corresponding to
non-extremal D4 branes

ds2 ∼
( u

R

)3/2
(

dx2
µ +

(

1− u3
0

u3

)

dτ2
)

+

(

R
u

)3/2 du2

1− u3
0

u3

+R3/2√uΩ4. (2.8)

with a non constant dilaton eφ = gs(u/R)3/4. In this solution τ has period 4π2R3/2/(3u1/2
o ).

A crucial ingredient in all the models obtained by the AdS/CFT correspondence is the iden-
tification of the radial coordinate in the supergravity solution with an energy scale in the dual field
theory. Let us first consider a conformal field theory and its AdS dual. The identification between
radius and energy follows from the form of the AdS metric (we put R = 1 when no confusion is
possible)

ds2 = u2dx2
µ +

du2

u2 . (2.9)

A dilatation xµ → λxµ in the boundary CFT corresponds in AdS to the SO(4,2) isometry

xµ → λxµ, u → u
λ
. (2.10)
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We see that we can roughly identify u with an energy scale µ. The boundary region of AdS (u � 1)
is associated with the UV regime in the CFT , while the horizon region (u � 1) is associated with
the IR. This is more than a formal identification: holographic calculations of Green functions or
Wilson loops associated with a specific reference scale µ are dominated by bulk contributions from
the region u = µ. Examples and further references can be found in [4]. Obviously, a change of scale
in a CFT has little physical meaning. In a non conformal theory, however, the quantum field theory
couplings run with the scale. This suggests that we can interpret the running couplings in terms
of a specific radial dependence of the fields in the supergravity solution. This interpretation works
very well at the qualitative level. As in the AdS case, the region with large (small) radius will be
associated with the UV (IR) dynamics of the gauge theory. However, the quantitative identification
of the radius with the scale can be difficult to find. For non-conformal theories the precise form of
the relation depends on the physical process we use to determine it [15]. The radius/energy relation
can be found for instance by considering the warp factor multiplying the flat four-dimensional part
of the metric ds2 = e2A(u)dxµdxµ + . . ., since e2A(u) is a redshift factor 1 connecting the energies
of observers at different points in the bulk: e−A(u′)E ′ = e−A(u)E. Alternatively, we can compute a
Wilson loop in supergravity [4]: the energy of a string stretched between the boundary and a fixed
IR reference radius represents in the gauge theory the self-energy of a quark. Finally, one can also
extract the radius/energy relation by analyzing the equation of motion of a supergravity mode with
fixed four-dimensional momentum. While for conformal theories all the different methods give the
same result, this is no longer true for gravity duals of non-conformal theories. Also in the relatively
well understood case of the Klebanov-Strassler solution (see Section 4), the different prescriptions
give different results [16, 17].

Our main interest in these lectures are non-conformal theories that reduce at low energy to
pure YM theories. Pure glue theories with N = 1 or N = 0 supersymmetry confine, have a mass
gap and a discrete spectrum of massive glueballs. We will now describe how these features are
realized in the gravity dual, using as a toy model the black three-brane of Example 2.3:

• Confinement: this issue is usually investigated using a Wilson loop [4]. The criterion for
confinement is the following: the warp factor e2A multiplying the four-dimensional part of
the metric

ds2 = e2A(u)dx2
µ + ... (2.11)

must be bounded above zero. The theory has then stable finite tension strings which can be
identified with the type IIB fundamental string. They will live in the region of the solution
where the warp factor has its minimum value e2A0 and their tension will be given by e2A0

2πα′ .
In the black brane example, the warp factor reaches its minimum e2A0 =

√
4πgsNu2

0 at the
horizon u0. Heavy external quark sources can be introduced at the boundary of AdS. The
potential energy between two external sources at distance L on the boundary is determined
by the energy of the string connecting them. The string will minimize its energy by deeply
penetrating in the interior of the geometry and by reaching u0 where the metric components√

gxxgtt have a minimum. For large L, the minimal energy configuration consists of three
straight segments: two long strings at fixed xµ connecting the boundary to the point u0, and a

1Both functions h(u) and A(u) are used in the literature. The relation between them is h(u) = e−4A(u).
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string at fixed u0 stretching for a distance L along the four-dimensional spacetime directions
(see Figure 1). The infinite energy of the long string from u = ∞ to u = u0 is interpreted
as the bare mass of the external source. All the relevant contribution to the potential energy
between two external sources is then due to a string localized at u = u0 and stretched in the
x direction. The total energy

E(L) = mq +mq̄ +
e2A0

2πα′ L (2.12)

then gives the linear increasing potential characteristic of confinement. This situation should

u0 u u0black−hole AdS

L

T

L

Figure 1: The quark-antiquark potential in the black-hole and in the conformal case.

be contrasted with the AdS case, where e2A(u) vanishes at u = 0. In this case, an explicit
computation of the the minimal area configuration gives an energy E(L) = mq +mq̄ + 1

L [4],
appropriate for a conformal theory.

• Glueball Spectrum: Masses of bound states can be extracted from correlation functions of
gauge invariant operators,

〈O(x)O(y)〉 ∼ ∑aie
−Mi|x−y|, |x− y| � 1 (2.13)

We can also extract Mi from the equation of motion for the fields φ dual to O by looking at
AdS-normalizable solution of the form [4]

φ(xµ,u) = φ(u)eikx, k2 = −M2 (2.14)

where k is the four-dimensional momentum. For example, for a minimally coupled scalar
field

∂µ(
√

ggµν∂νφ)−√
gm2φ = 0 (2.15)

which propagates in the AdS-black hole, the spectrum is determined by the Schroedinger
type equation

∂u(u(u4 −u4
0)∂uφ)+M2uφ−m2u3φ = 0 (2.16)
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This equation should be solved with the following boundary conditions: regularity at the
horizon and normalizability at large u 2. With these boundary conditions, the previous equa-
tion determines a discrete spectrum of strictly positive masses M2

n > 0. This result is in-
terpreted as the existence of confinement and a mass gap. Once again this result should
be contrasted with the AdS case: in the AdS metric the equation for a minimally coupled
scalar field determines a continuum spectrum of masses M2 > 0 not bounded above zero.
Notice that the typical glueball mass in the black hole background is given by ∼ 1

R2
0

while the

string tension is
√

4πgsNu2
0 ∼

√
gsN
R2

0
. The two scales are different, with the glueball masses

much smaller than the string tension. This is a typical discrepancy which is present in many
gauge/gravity dualities.

• The Decoupling Problem: In all the gauge/gravity dualities we will be eventually able to
perform predictive calculations only in the limit where the supergravity approximation is
valid. It is difficult to study the complete dynamics of “realistic” theories such as pure Yang-
Mills in this context. For example, in the black three-brane case, the compactification on a
circle of radius R0 of N=4 SYM with coupling gY M breaks conformal invariance and leads
at low energy to a non conformal 3d YM theory with coupling constant 1

g2
3DN

= 2πR0
g2

Y MN
. The

limit where the low energy theory decouples from the CFT leaving a finite three dimen-
sional coupling is R0 → 0 with x = Ng2

Y M → 0. However, we can trust supergravity in the
opposite limit x � 1. Thus the description of the low energy pure YM theory requires the
knowledge of the full string theory. Similar arguments apply to all the non-conformal mod-
els constructed so far. In many other examples, we work directly in four dimensions and
we obtain pure YM by adding a mass deformation M to a CFT that possesses a holographic
dual. In this case, the mass parameter induces a dimensional scale Λ ∼ Me−1/Ng2

YM . Once
again the decoupling limit is M → ∞, x = Ng2

Y M → 0, with Λ fixed, which is the opposite
of the supergravity limit. The expectation that the spectrum of bound states in any realistic
model should contain higher spin glue-balls suggests that more than supergravity is required
to describe the pure YM theory. In the previous example, it would be sufficient to re-sum all
world-sheet α′ corrections in the string background to correctly describe pure YM in the large
N limit. World-sheet corrections are, in principle, more tractable than loop corrections. In
flat space, for example, all the α′ corrections are computable. In the AdS case, the analogous
computation is made difficult by the presence of RR-fields. We may take various attitudes
towards the supergravity duals. In the previous example, we may consider the supergravity
solution as a description of pure YM with a finite cut-off Λ ∼ M. The situation is similar,
in spirit, to a lattice computation at strong coupling. In general, in all the models discussed
so far, the supergravity solution describes a YM theory with many non-decoupled massive
modes. These theories can be considered as cousins of pure YM, and they have often the
same qualitative behavior. At present we have many examples of theories that are, in a cer-

2Normalizability here means the following. At large u the theory is asymptotically AdS and a minimally coupled
field of mass m behaves as φ(u) ∼ Au∆−4 + Bu−∆, where m2 = ∆(∆− 4) is the familiar relation between mass and
conformal dimension valid in the conformal case [4]. The contribution proportional to A is non-normalizable in AdS
while the term proportional to B is normalizable (

R √
g|φ|2 < ∞ for every field satisfying the unitarity bound ∆ > 1).

When studying the spectrum, we shall only consider normalizable wave-functions.
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tain sense, generalization of pure glue theories. They are interesting as exactly solvable toy
models. Moreover, it is interesting to investigate which properties of pure YM, that are not
consequences of symmetries, are realized in these generalized models.

3. Adding flavors

Real QCD contains matter in the fundamental representation. Confinement can be thought as a
property of the pure gluonic theory and studied, in the large N limit, as in the previous Section.
However the introduction of matter fields leads to new features: the flux tubes become unstable
and flavor symmetries can be spontaneously broken. It is therefore important to include flavors
in the AdS/CFT correspondence. Fundamental fields can be added by introducing other branes
beside D3. The problem of finding smooth solutions containing different type of branes is still
an open one. A great simplification can be achieved in the limit where the number of flavors is
much less than the number of colors [19]. In this case, other branes can be introduced as probes.
The probe approximation is a sort of quenched approximation where the effect of the glue on the
dynamical quarks is included but the backreaction of the quarks is not. At large t’Hooft cou-
pling, this quenched QCD behaves qualitatively as real QCD, exhibiting a spectrum of mesons
and baryons and chiral symmetry breaking. Mesons correspond to fluctuations of the probe branes
and their spectrum is computable along the lines discussed in the previous Section. Obviously, in
the strongly coupled regime, the mesonic spectrum may give surprises when compared with the
expectations at weak coupling.

Let us start by discussing the standard brane set-up for introducing fundamental matter fields.
Example 3.1: Consider a system of parallel D3 and D7 branes, with Nc D3 along the directions
(0123) and N f D7 along (01234567). On the world-volume of the D3 branes, we obtain an N = 2
gauge theory with gauge group U(Nc), N f hypermultiplet matter fields transforming in the funda-
mental representation and one transforming in the adjoint representation (Figure 2). The R symme-

4567

890 m

D3
D7

Figure 2: The U(Nc) gauge fields and the ajoint hypermultiplet are obtained from the D3-D3 open strings,
while the fundamental hypermultiplets from the D3-D7 open strings.

try of the theory is SU(2)R ×U(1)R, where SU(2)R is a subgroup of the SO(4) that rotates (4567)

and U(1)R rotates the plane (89). The relative distance between D7 and D3 branes determines the
mass of the hypermultiplet.
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There exist supergravity solutions associated to D3 and D7 branes [18]. Consistent solutions
also requires O7 planes since the D7 branes backreaction generates a logarithmic deformation in
the (89) components of the metric. With this type of construction we can obtain USp gauge groups.
The situation simplifies in the probe approximation. For N f � Nc, the back-reaction of the D7 can
be neglected. The near horizon geometry associated to such gauge theories is still AdS5 ×S5 with
D7 introduced as probes [19]. This is a sort of quenched approximation: the glue effect on the
quarks are included (the D7 feels a modified geometry) but no quark effect on the glue is included
(no backreaction).

A D7 brane in AdS5 ×S5 at x8 = x9 = 0 will fill AdS5 and wrap an S3 inside S5. The situation
is more complicated if x8 = x9 6= 0 (i.e. m 6= 0) and the D7 brane will acquire a non trivial shape.
To investigate the D7 embedding, we choose metric coordinates for space transverse to the D3 as
follows

ds2
6 = dr2 + r2(dψ2 + cosψ2dθ2 + sinψ2Ω3) = dρ2 +ρ2Ω3 +dx2

8 +dx2
9 (3.1)

where r2 = x2
4 +x2

5 +x2
6 +x2

7 +x2
8 +x2

9 while (ρ,Ω3) give spherical coordinates for the four directions
(4567).

Consider a D7 brane located at x8 + ix9 = m.

• For m = 0, the D7 brane wraps S3 ⊂ S5. The induced metric is AdS5×S3. The presence of an
AdS5 factor suggests that the theory is still conformal. In the absence of D7 branes the theory
is N = 4 SYM. With the addition of N f 6= 0 massless flavors the beta function is no more
vanishing. However, the corrections to the beta function for the t’Hooft coupling depend on
N f /Nc, which is negligible in the probe approximation.

• For m 6= 0, conformal invariance is broken even in the probe approximation. The induced
metric on a D7 brane is

ds2 = (ρ2 + |m|2)dx2
µ +

dρ2

ρ2 + |m|2 +
ρ2

ρ2 + |m|2 Ω3 (3.2)

where we have used r2 = ρ2 + m2. The induced metric is AdS5 × S3 only asymptotically
(ρ � 1), that is in the UV where the mass can be effectively neglected. The embedding of
the D7 brane in the background geometry is highly non trivial. The S3 radius indeed depends
on ρ and vanishes for ρ = 0 (this means r = |m|!). Therefore, the D7 brane does not fill
the entire AdS5 (see figure 3) [19]. Notice also that the D7 wraps a contractible cycle; this
avoids problems with charge conservation and the necessity of including other D7 branes or
O7 planes.

We can better study the shape of the D7 brane by looking at the Born-Infeld action. By
choosing the obvious embedding xI = (xµ,ρ,Ω3,x8(ρ),x9(ρ)) and defining Φ = x8 + ix9 the BI
action reads

T7

Z

√

GIND ∼
Z

d8x
√

g
√

1+gΦΦ̄gab(∂aΦ)(∂bΦ̄) =
Z

d8xρ3
√

1+ |∂ρΦ|2 (3.3)

The equations of motion for x8(ρ) (we put for simplicity x9 = 0)

d
dρ

(

ρ3
√

1+(∂ρx8)2
dx8
dρ

)

= 0 (3.4)
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S 3

AdS

D7

|m|

Figure 3: The topologically trivial cycle wrapped by the D7 brane.

has asymptotic solution for ρ � 1
x8(ρ) = |m|+ c

ρ2 (3.5)

The two terms in (3.5) have a simple interpretation that is obscured by the fact that the field x8
is not canonically normalized. We then switch to the angular variable ψ related to x8 by x8 = r cosψ.
The expansion of ψ for r � 1 is

ψ(r) =
π
2 +

( |m|
r

+ ...

)

+
c
r3 (3.6)

The fluctuation ψ̃ = ψ̃−π/2 is governed by the linearized BI action
Z

r3 sinψ3
√

1+ r2(∂rψ)2 ∼
Z √

g

(

1+
(∂ψ̃)2

2 − 3
2 ψ̃2

)

(3.7)

We see that ψ̃ propagates in the background geometry AdS5 as a canonically normalized scalar
field with mass squared −3 (in units of the AdS radius). The AdS/CFT correspondence predicts the
following relation between the mass m of a scalar field in the bulk and the conformal dimension ∆
of the dual operator [4]

m2 = ∆(∆−4) (3.8)

ψ̃ thus corresponds to an operator of dimension three that we can identify with the quark bilinear
operator qq̄. According to the standard AdS/CFT philosophy [4], the two terms in (3.6) can be
interpreted as follows 3

• m/r is the non-normalizable solution of the equation of motion (r∆−4). Its presence indicates
that the Lagrangian has been deformed with the mass term mqq̄.

• c/r3 is the normalizable mode (r−∆). Its presence indicates that the gauge theory is in a
vacuum where the operator qq̄ has a non-zero VEV. Notice that this option is forbidden in
supersymmetric theories where the quark bilinear must vanish.

3Due to the non linearities of the BI action, there are subtleties in correctly identifying the VEV in equation (3.6)
[19]. Notice, for example, that a supersymmetric zero-VEV configuration with x8 = |m| is mapped to ψ = arccos |m|

r =
π
2 − |m|

r − |m|3
r3 + ....
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The inclusion of D7 branes introduces in the AdS5 ×S5 background a set of new fields whose
fluctuations are dual to mesonic operators. These fields come from D7-D7 open strings and are
localized on the eight-dimensional world-volume of the D7 branes. The mesonic spectrum can be
studied using the Born-Infeld action for D7 branes in the type IIB background.
Example 3.2. The mesonic spectrum in the N = 2 theory: The mesons in this theory are
obtained by reducing the D7 worldvolume fields on S3. The mesons will fit in multiplets of the
N = 2 supersymmetry and, without loss of generality, we can restrict our attention to the bosonic
modes. We get KK towers of scalar fields both from the reduction of Φ = x8 + ix9 and of the gauge
fields with components along S3. We also obtain a tower of KK vector modes from the reduction
of the D7 gauge fields. All these KK modes can be classified according to the S3 quantum numbers
(l, l′). From Φ, for example, one obtains a tower of scalar KK modes with quantum numbers (l, l)
dual to operators with dimension ∆ = 3 + l. The simplest case with l = 0 is the quark bilinear
described above. The cases l 6= 0 correspond to operators of the form qφl q̄, where φi, i = 1,2,3,4
are the scalar components of the adjoint hypermultiplet. Consider, for example, the equation of
motion for the field Φ: it follows from the linearization of the action (3.3)

1√
g

∂a

(√
g

gab

r2 ∂bΦ
)

= 0 (3.9)

For a KK mode with four-dimensional momentum k and corresponding to a spherical harmonic
(l, l) on S3

Φ = φ(ρ)eikxYl (3.10)

we obtain
1
ρ3 ∂ρ(ρ3∂ρφ)+

(

R4M2

(ρ2 + |m|2)2 −
l(l +2)

ρ2

)

φ = 0 (3.11)

where M2 = −k2 is the four dimensional mass. We also reintroduced the AdS radius R. As dis-
cussed in Section 2, the mesons correspond to solutions of this equation that are regular and nor-
malizable at infinity. The previous equation can be explicitly solved [20], giving a spectrum of
scalar mesons with masses

M2
n =

2|m|
R2

√

(n+ l +1)(n+ l +2) (3.12)

One can repeat the analysis for the other KK towers obtaining scalar and vector mesons with
comparable masses [20]. Notice that the lightest meson has a mass M ∼ m/

√
gsN, much smaller

that the mass m of the quarks since the the supergravity approximation requires gsN � 1. The
meson mass will be given by M = 2m−Ebinding. Since we are inserting quarks in an N = 4 gauge
theory, their interaction is mainly due to Coulomb forces. The problem is similar to that of a
hydrogenic atom. At weak coupling Ebinding ∼ (gsN)2 and M is of order m. At strong coupling we
see that the binding energy cancels most of the rest energy of the quarks [20].
Example 3.3. QCD4: Our principal interest are non-conformal theories. We can then consider the
background of non extremal D4 branes discussed in Section 2 and add D6 branes [21]. The discus-
sion is completely parallel to the D3-D7 case. We consider Nc D4 branes along (01234) and N f D6
along (0123567). Since the number of mutual Dirichlet-Neumann directions is four, the system is
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N = 2 supersymmetric: U(Nc) SYM with N f flavors plus an adjoint hypermultiplet. A compactifi-
cation in the direction 4 gives masses to all the fermions and scalars of the gauge multiplet and to
the scalars of the flavor multiplets. The N f fundamental quarks are however protected by the U(1)A

symmetry that rotates the (89) plane and remain massless. The result is QCD4 with N f quarks. In
the probe approximation for the D6 we are considering QCD in the quenched approximation. The
D4 background is as in equation (2.8)

ds2 ∼
( u

R

)3/2
(

dx2
µ +

(

1− u3
0

u3

)

dτ2
)

+

(

R
u

)3/2 du2

1− u3
0

u3

+R3/2√uΩ4. (3.13)

The simple case N f = 1 has been studied in [21]. In Figure 4, we plotted x8 + ix9 as a function of

89

ρ

89

ρ

89

ρ

b) c)a)

Figure 4: The three cases: the supersymmetric one, the non-supersymmetric one with m 6= 0 and the non-
supersymmetric one with m = 0.

ρ. Case a) in the Figure corresponds to the supersymmetric solution with u0 = 0. In this case there
is no quark condensate and c = 0. This is consistent with the fact that supersymmetry forbids a
quark condensate. Case b) and c) correspond to the QCD4 case. We see from case b) that for non
zero mass there is a non vanishing condensate c = c(m); the axial symmetry U(1)A -rotation in the
plane (89)- is explicitly broken by the mass term. In case c), although m = 0, x8 + ix9 has a non
trivial profile. This means that there exists a quark condensate at zero mass. This is the standard
expectation for QCD: the chiral symmetry is spontaneously broken. Moreover, the spectrum for
the mesons can be computed by analyzing the equation of motion for the fluctuation x8 + ix9. This
can be done using the Born-Infeld action in the background (3.13). In [21] a massless meson was
found in the spectrum for m = 0: this is the massless pion, or better, the η′ particle.

We can flavor other supersymmetric and non-supersymmetric backgrounds [22]. In all these
cases, one can study chiral symmetry breaking and the spectrum of mesons. In the supersymmetric
case one must check that the probe wraps a supersymmetric cycle. As usual, all the qualitative
properties of QCD are well described by these dual solutions. We always need to remember that
we are studying phenomena in strongly coupled gauge theories where the spectrum may exhibit an
unexpected behavior, as we saw, for instance, in Example 3.2.

4. N=1 theories

Possibly regular 10 dimensional supersymmetric type IIB solutions dual to N = 1 SYM the-
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ories are

• KS: The Klebanov-Strassler solution [8]. It is obtained using fractional branes on a conifold.
The dual gauge theory has SU(N + M)× SU(N) gauge group and bi-fundamental matter
fields.

• MN: The Maldacena-Nunez solution [9]. It is obtained from wrapped branes. The dual
theory is a compactification to four dimensions of the six-dimensional Little String Theory;
at low energy the theory is effectively four dimensional with gauge group SU(M).

• PS: The Polchinski-Strassler solution [23]. It includes brane sources – three-branes polarized
into a five-brane by a dielectric effect [24]. The complete solution is not known, although
it is believed to exist. The dual theory is the so-called N = 1∗ theory, N = 4 SYM with a
mass for the three adjoint chiral fields.

We will focus on the KS and MN cases, which are explicitly known and regular. They also
have a classical chiral U(1)R symmetry as pure N = 1 SYM. There is indeed a limit where the
dual gauge theories reduce to pure N = 1 SYM in the IR. As discussed in the previous Section,
this must necessarily be a stringy limit. In the regime of parameters where we can control the
solution, these theories appear as deformations of pure N = 1 SYM, which nevertheless share
various properties of the same. We briefly recall here the main properties of pure SU(N) N = 1
SYM. There is a classical U(1)R symmetry, rotating the gaugino, which is broken to a discrete Z2N

subgroup by instantons. This theory has N vacua associated with the spontaneous breaking of the
Z2N symmetry to Z2 by gaugino condensation,

< λλ >∼ NΛ3e2πin/N , (4.1)

where Λ is the physical, RG invariant mass scale, and may be written in terms of the bare coupling τ
at some UV scale as Λ = ΛUV e2πiτ/3N . The integer n = 0, ..,N−1 in (4.1) labels the different vacua.
In presence of a spontaneous breaking of the Z2N symmetry, we expect the existence of domain
walls (classical field configurations of codimension one) separating different vacua [25, 26]. The
domain walls in N = 1 gauge theories are BPS saturated and their tension is determined by a
central charge of the supersymmetry algebra [25, 26], in terms of holomorphic data. The tension
of a domain wall connecting the vacua i and j is determined by

TDW ∼ N|(λλ)i − (λλ) j| ∼ N2Λ3 sin (i− j)π
N

. (4.2)

In the large N limit the tension is then linear in N. By analogy with D-branes, it was conjectured
that the QCD strings can end on N = 1 domain walls[26]. This typically happens also in all stringy-
inspired generalization of pure N = 1 SYM, where domain walls are realized in terms of branes
and the QCD strings in terms of fundamental or D-strings. It is widely believed that pure N = 1
SYM confines and has a mass gap. The characteristic scale of the theory Λ is set by the tension
of the color flux tubes, or briefly QCD strings. They are not BPS objects and the value of their
tensions cannot be fixed in terms of central charges or symmetries. Strings connecting external
sources in different representations of the gauge group are, in general, different physical objects.
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They are classified by the center of the gauge group. In a confining N = 1 SU(N) SYM theory,
we can define N − 1 different types of QCD strings, since there are exactly N − 1 representations
of the gauge group that are not screened by gluons. A k-string, k = 1, ...,N −1, connects external
sources in the k-fold antisymmetric representation of SU(N). It is then interesting to ask what is
the ratio of the tensions for k-strings.

As we will see in the following, in the KS and MN theories there is chiral symmetry breaking
and colored flux tubes, identified with the fundamental strings. Domain walls can be identified as
wrapped five-branes and the QCD strings can end on them. The k-string tension can be explicitly
computed [29]. In many stringy-inspired models one can indeed derive the sine formula for the
ratio of k-strings

Tk

Tk′
=

sinkπ/N
sink′π/N

. (4.3)

This formula, or mild modifications of it, is valid in a variety of toy models exhibiting confinement,
from softly broken N = 2 SYM [27] to MQCD [28]. It is also realized in the MN solution (and,
with a small correction, in the KS model) [29]. It is certainly not an universal formula. There are
many quantum field theory counterexamples showing that it can have corrections [30]. It would be
quite interesting to understand if this formula is valid in pure YM theories. Unfortunately, since
the QCD strings are not BPS, there is no known method of performing a rigorous computation in
N = 1 SYM. Interestingly, the sine formula has been supported by recent lattice computations for
pure non supersymmetric YM [31]. As a difference with pure N = 1 SYM where the same scale
Λ determines the scale of chiral symmetry breaking and the string tensions (TDW ∼ Nλ3, Ts ∼ Λ2),
in the KS and MN theories Ts and TDW are distinct.

The KS theory is not really in the same phase of pure N = 1 SYM. The KS vacuum belongs
indeed to a one-dimensional moduli space that is obtained by varying the VEV of some baryonic
operator [32, 33]. It is in a phase with confinement, chiral symmetry breaking but no mass gap.
There is indeed a family of regular type IIB solutions deforming KS [33, 34]. As we will see in the
following, with a specific choice of boundary conditions, the same family interpolates between KS
and MN [34].

4.1 Physical branes at conical singularity: the conformal case

Let us start with a stack of D3-branes at the conical singularity of a Calabi-Yau C6. As dis-
cussed in Section 2, this will give rise to a class of superconformal gauge theories on the D3 branes.
A Calabi-Yau threefold reduces the amount of supersymmetry from 32 to 8 supercharges. The pres-
ence of D3-branes further breaks to 4 supercharges. This set-up thus generically describes N = 1
gauge theories. In the near horizon geometry, the conformal supersymmetries enhance the number
of supercharges to 8. If C6 is a cone over the five-dimensional manifold M5, the metric has the
form (2.6) and the near horizon geometry is AdS5 ×M5.

C6 is a Calabi-Yau (a Ricci flat Kahler manifold) if and only if M5 is a Sasaki-Einstein manifold
[13]. The Einstein condition means R(5)

µν = Λg(5)
µν and is necessary for C6 to be Ricci-flat [11,

12]. The Sasaki condition is more complicated; it is a set of conditions that are equivalent to
the fact that C6 is Kahler. Until recently, the only known regular Sasaki-Einstein manifolds in five
dimensions were homogeneous spaces: S5 = SO(6)/SO(5) with 32 supercharges, corresponding to
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N = 4 SYM, and T 1,1 = (SU(2)×SU(2))/U(1) with 8 supercharges. Infinite new Sasaki-Einstein
manifolds Y p,q and Lp,q,r with topology S2 ×S3 were recently constructed [35, 36].

The interesting features of all these metrics is that the gauge theory living on the D3-brane
world-volume can be explicitly determined. Let us start with the well known case of T 1,1 [12]. The
manifold C6 relevant for this example can be written as a singular quadric in C

4, ∑4
a=1 w2

a = 0, or
equivalently

detW = 0, (W ≡ σawa, σ = (σi, i1)), (4.4)

σi being Pauli matrices. This equation is invariant under SO(4)×U(1)R ∼ SU(2)×SU(2)×U(1)R.
The constraint (4.4) can be solved in terms of complex doublets Ai,B j (Wi j ∼ AiB j) satisfying

|A1|2 + |A2|2 = |B1|2 + |B2|2, Ai ∼ eiαAi, Bi ∼ e−iαBi. (4.5)

C6 is a cone over T 1,1. The base of the cone is obtained by intersecting C6 with the sphere
∑4

a=1 |wa|2 = 1, or, equivalently, by restricting ∑ |Ai|2 = ∑ |Bi|2 = 1 in eq. (4.5). In this way we
obtain an equation for (S3 × S3)/U(1) = (SU(2)× SU(2))/U(1) = T 1,1. An Einstein metric on
T 1,1 is

ds2
T 1,1 =

1
9(dψ+

2

∑
i=1

cosθidφi)
2 +

1
6

2

∑
i=1

(dθ2
i + sin2 θidφ2

i ). (4.6)

The angular variable ψ ranges from 0 to 4π, while (θ1,φ1) and (θ2,φ2) parameterize two S2’s in
the standard way. The expression above shows that T 1,1 is an S1 bundle over S2 × S2. The metric
is invariant under SU(2)× SU(2)×U(1)R, where the SU(2) factors act on the two S2 and U(1)R

shifts the angle ψ. By forgetting an SU(2), T 1,1 can be also written as an S3 bundle over S2. It can
be proved that such bundle is topologically trivial (see for instance [12]), so that T 1,1 is isomorphic
to S3 ×S2. In particular, T 1,1 has non-trivial two and three cycles where we could wrap D-branes.

It is difficult, in general, to determine the world-volume theory of branes sitting at singularities
different from the orbifold ones. A powerful hint in this direction is provided by the observation that
the space transverse to the branes should describe the moduli space of the gauge theory. In our case,
equations (4.5) can be viewed as the D-terms of an N = 1 abelian gauge theory [12] U(1)×U(1)

with two sets of chiral multiplets Ai and Bi with charges (1,−1) and (−1,1), respectively. Here the
diagonal U(1) factor is decoupled while the other linearly independent combination of the U(1)’s
acts as in eq. (4.5). We identify this theory with that living on the world-volume of a brane placed
at the conifold singularity. The moduli space of vacua of such abelian N = 1 theory is in fact
identical to C6. When we consider a stack of N parallel D3-branes at the singularity, we have to
extrapolate this result to the non-abelian case. We then consider a U(N)×U(N) theory with two
sets of chiral fields Ai,Bi transforming in the representations (N,N) and (N,N). We must also add
to the theory the superpotential

W = hεi j εpqTr(AiBpA jBq). (4.7)

Such superpotential respects all the symmetries of the model and is crucial for avoiding a prolifer-
ation of geometrically-redundant non-abelian modes [12]: with W one can check that the classical
moduli space of vacua corresponds to N copies of (4.5), corresponding to N branes free to move
on C6. The global symmetry of the CFT is SU(2)× SU(2)×U(1)R, which corresponds to the
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isometry of T 1,1. When considering the AdS dual, the U(1) factors become invisible and the gauge
group is SU(N)×SU(N).

There are various strong checks that the identification is correct. First of all, the theory has
to be conformal. Using the results of [12] it can be rigorously proved that this non-abelian gauge
theory flows at low energies to an interacting conformal field theory. Indeed, even though the theory
depends on various parameters, the couplings gY M,i and h, the conditions for conformal invariance
[37] impose a single relation among them [12]. For both groups, the vanishing of the exact NSVZ
beta functions [38]4 gives the relation

µ
d
dµ

8π2

g2
Y M,i

∼ 3T (G)−∑T (Ra)(3−2∆a) = N(2(∆A +∆B)−3) = 0, (4.8)

where ∆A,B(gY M,i,h) are the dimensions of the fields Ai and B j. These dimensions do not depend
on the indices i, j due to the SU(2)×SU(2) invariance. When (4.8) is satisfied, the last condition,
which requires that the superpotential has scaling dimension three [37], is automatically satisfied.
We are thus left with a manifold of fixed points, defined implicitly by the requirement that the di-
mension of the gauge invariant operator Tr(AB) is 3/2. This manifold has complex dimension two:
the two exactly marginal parameters of the CFT are identified in the gravity dual with the dilaton
and the value

R

S2 B(2) of the B-field on the non-trivial two cycle. These two are free parameters in
the type IIB solution since they only enter the equations of motion under derivatives.

There are many other impressive checks of the identification:

• The spectrum: the complete KK spectrum of Type IIB compactified on T 1,1 has been com-
puted [39], finding a complete agreement with CFT expectations.

• The central charge: it is well known that the conformal anomaly in four dimensions is deter-
mined by two central charges a and c which multiply the two independent invariants in the
trace of the stress-energy tensor

T µ
µ = − a

16π2 (R2
i jkp −4R2

IJ +R2)+
c

16π2 (R2
i jkp −2R2

IJ +
1
3R2) (4.9)

c can be also extracted from the two point function < T (x)T (0) >∼ c/|x|8. For conformal
theories with an AdS dual, the central charges satisfy c = a [40]. The explicit value of c = a
is proportional to the inverse volume of M5 [41] 5 and, therefore, can be determined through

4In N = 1 gauge theories, if we use a holomorphic scheme, the beta function is completely determined at 1-loop.
From this result one can then deduce the following beta function for the 1PI coupling µ d

dµ
8π2

g2
Y M

= f (gY M)(3T (G)−
∑T (Ra)(3−2∆a)) where T (G) is the second Casimir of the group G, and T (Ra) are the Casimirs for the representations
Ra of the matter fields; we use the conventions that T (adjoint) = Nc and and T (fundamental) = 1/2 for an SU(Nc) group.
Here, f (gY M) is a positive scheme dependent function of the coupling. The knowledge of f (gY M) is not necessary when
imposing the scheme independent condition β(gY M) = 0.

5This scaling is better seen by writing the solution in the form ds2 = L2ds2
AdS +L2ds2

M5
and F5 ∼ NvolM5/Vol(M5)

(so that
R

M5
F5 = N). The relation between L and Vol(M5) then follows from the Einstein equation R ∼ Fi jkl pF i jkl p and

reads L4 ∼ N/Vol(M5). The effective five dimensional action for gAdS with all factors of L and Vol(M5) rescaled is
then proportional to L8Vol(M5) ∼ 1/Vol(M5), and this factor will appear multiplicatively in all correlation functions
computed from the AdS/CFT prescription.
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the relation c/cN=4 = Vol(S5)/Vol(M5). The value of c = a is explicitly computable with
quantum field theory methods from the R-charge R using the formula [42, 43]

a(R) =
3
32(3TrR3 −TrR) (4.10)

where the trace is taken over all the fermionic fields 6. Formula (4.10) predicts the ratio
c/cN=4 = 27/16 which remarkably agrees with the computation using the volumes since
Vol(S5) = π3 and Vol(T 1,1) = 16π3/27 [41].

• The baryons: U(1) factors are not described by the AdS/CFT duality. In our case one of
them is decoupled while the other reduces to a global baryonic symmetry. The corresponding
gauge field in AdS5 ×T 1,1 is obtained by reducing the RR four-form on the three sphere S3.
This vector multiplet is known in the supergravity literature as the Betti multiplet. Baryons
in this theory are then constructed as D3-branes wrapped on S3. The two baryonic operators
AN and BN can be identified as D3-branes wrapped over the two supersymmetric cycles at
(θ1 = φ1 = 0) and (θ2 = φ2 = 0). The conformal dimension of these chiral operators is large,
being equal to 3N/4. This formula can be explicitly tested: ∆ can be computed in purely
geometrical terms from the volume of the three cycle Σ using the formula [44]

∆ =
πNVol(Σ)

2Vol(T 1,1)
(4.11)

This formula is a consequence of the fact that the mass of a wrapped D3-brane can be com-
puted from the volume of the three cycle. Moreover, for operators with large dimension, the
familiar relation between mass and dimension becomes linear m =

√

∆(∆−4)R2 ∼ ∆R. This
piece of information and some attention to normalizations leads to formula (4.11). By using
the explicit metric for T 1,1 given above, it is easy to check that formula (4.11) reproduces
the correct result ∆ = 3N/4.

It is remarkable that a similar analysis can be carried out for the manifolds Y p,q and Lp,q,r. We
refer for a detailed treatment to [46, 47, 48, 49, 50, 51]. In Figure 1 we pictured in quiver language
the gauge theory corresponding to the simplest case Y 2,1. The check of baryonic dimensions and
central charges (computable both from field theory - using the recently developed technique of a-
maximization - and from supergravity from volumes of cycles) gives a remarkable agreement. We

6To use this formula, one has to remember that, for chiral fields, the conformal dimension is related to the R-
charge by ∆ = 3R/2. Normalizations are chosen such as the N = 1 supercharge Q has charge −1 and the gaugino
(with dimension 3/2) has charge +1. For a chiral field Φ = φ + θψ + ... with dimension ∆ the associated fermion
ψ has charge 2∆/3− 1. The difficulty in using formula (4.10) is to find the correct superconformal R-charge, since
we can always add any combination of existing anomaly free U(1) global symmetries. Actually, the a-maximization
procedure discovered in [43] implies that the R-charges of an N = 1 superconformal fixed point are the ones that locally
maximize the functional (4.10). The maximization is done with respect to the most general assignment of R-charges
ri to the chiral fields that i) respects the global symmetries, ii) gives R-charge 2 to each term in the superpotential
and iii) implies the vanishing of the numerator of the NSVZ beta function for each group (this last condition, written
as β ∼ T (G)+ ∑T (Ra)(ri − 1), is equivalent to the vanishing of the t’Hooft anomalies for the U(1)R charge). In the
T 1,1 case, we have a global U(1) baryonic symmetry that may mix with R; the most general assignment is rA = x and
rB = 1− x and a(R) has a local maximum exactly for rA = rB = 1/2. This result is obviously consequence of the Z2
symmetry between A and B. More generally, it easy to prove that baryonic symmetries (or symmetries J that satisfy
TrJ = 0) cannot mix with the superconformal R-charge.
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Figure 5: The quiver for Y 2,1. Each node is a gauge group U(N) and each link, counted with arrow mul-
tiplicity, a chiral bi-fundamental. For each closed loop of oriented arrows (triangle or rectangle) there is a
term in the superpotential containing the product of the fields along the loop.

should also notice that some remarkable progress has been made recently in the identification of
the correspondence between toric singularities and dual gauge theories [52] using the brane tiling,
an ingenious generalization of the brane boxes construction [53, 54].

4.2 Wrapped and fractional branes

Most of the recently proposed duals of non-conformal theories are based on wrapped and
fractional branes. The philosophy may be exemplified in the four dimensional case as follows.
Consider a geometry with a non-trivial two-cycle S2 on which we wrap a D5-brane. The world-
volume of the brane is thus of the form R

4 × S2, and at energies lower than the inverse radius of
S2 the theory living on the world-volume is effectively four dimensional. String theory has many
moduli, some geometrical in nature and some related to the bundles of antisymmetric forms which
are always present in string theory. For simplicity, we focus on two specific moduli associated with
S2: the volume of S2 and the integral of the B-field over the cycle. Only the first modulus has a
geometrical meaning. These moduli appear in the Born-Infeld action for the D-brane

− 1
(2π)5α′3

Z

dx6 e−Φ√G+2πα′F +B =

= − 1
(2π)5α′3

Z

dx4
[

e−Φ
Z

S2
dΩ2

√

(G+B)S2

]

√

(G+2πα′F +B)R4 . (4.12)

We see, by expanding the last square root, that the four dimensional gauge theory has an effective
coupling which reads

1
g2 ∼ e−Φ

Z

S2
dΩ2

√

(G+B)S2 . (4.13)

Whenever the quantity on the r.h.s. of this equation runs, also the coupling does, and the resulting
theory is non-conformal. We can then have two basic different models:

• Wrapped branes [55, 56]: configurations of D5-branes wrapped in a supersymmetric fashion
on a non-vanishing two-cycle Vol(S2) 6= 0. There is no need to introduce a B-field.

• Fractional branes [57]: configurations of D5-branes wrapped on collapsed cycles. If 2πb =
1

2πα′
R

S2 B 6= 0, the corresponding four-dimensional theory has still a non-vanishing well-
defined coupling constant. Manifolds with collapsed cycles are singular, and fractional
branes must live at the singularity.
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The amount of supersymmetry preserved in these kinds of model depends on how the S2 is embed-
ded in the background geometry.

In particular, Calabi-Yau cones over bases with non-trivial two cycles have collapsing spheres.
Thus both T 1,1 and Y p,q admit fractional branes [58, 59]. Let us, for simplicity, consider the case
of T 1,1 which has a single collapsed two cycle. A D5-brane or anti-D5-brane wrapped over an S2

in M5 will minimize its volume sitting at the tip of the cone r = 0. Since the sphere is collapsed
to a point, these five-branes have a complementary interpretation as three-branes. There are two
different RR four-forms after the reduction on C6: the original type IIB C(4) and CT

(4), the reduction
of the ten dimensional RR six-form C(6) along S2. Consequently, we expect to classify three branes
using two RR charges and we expect the existence of two different types of branes, that we name
fractional. The two types of fractional branes can be represented as a D5-brane wrapped on the
collapsed two-cycle, or an anti-D5-brane with one unit of flux for the gauge field living on it:
R

S2
F = −2π [60, 57, 61]. From the Born-Infeld and Wess-Zumino action for D5 or anti-D5 branes

− 1
(2π)5α′3

[

Z

dx6e−Φ√G+2πα′F +B (4.14)

±
Z

(C(6) +C(4)∧ (2πα′F +B)+
1
2C(2)∧ (2πα′F +B)2 +

1
6C(0)∧ (2πα′F +B)3)

]

.

we see that the charges under (CT
(4),C(4)) are (1/2,b) and (−1/2,1− b), respectively. Since the

tensions are proportional to |b| and |1−b|, for b ∈ [0,1), these values satisfy the BPS condition. A
physical D3-brane is made as a bound state of two different types of fractional branes.

Each D5 or anti-D5 brane gives rise in four dimensions to a gauge field. From this point of
view the U(N)×U(N) gauge theory living on N physical D3-branes at the conifold singularity
can be reinterpreted as follows: each physical D3-brane is actually divided in two fractional branes
and each type of three brane is responsible for one of the two gauge groups. Extrapolating from
this, we conclude that, in the presence of n1 and n2 fractional branes of the two types we realize
a U(n1)×U(n2) gauge theory with two pairs of bi-fundamental fields Ai,Bi interacting with the
superpotential (4.7) [58]. Fractional branes can only live at the singularity, but two fractional branes
of different type can join to form a physical brane that can move freely on the conifold: this motion
corresponds to the Higgs branch of the gauge theory. The complexified gauge couplings of the
two groups, τi = θi

2π + i 4π
g2

Y M
, are determined (for b ∈ [0,1)) in terms of the space-time fields by

equation (4.14)
τ1 = (bτ+ c), τ2 = (1−b)τ− c, (4.15)

where τ = C(0) + ie−Φ is the complex dilaton of Type IIB. For n1 = n2 the theory is conformal
and the two coupling constants correspond to two exactly marginal parameters in AdS5 ×T 1,1: the
dilaton and the value of the B-field on S2. For n1 = N + M and n2 = M the theory is no longer
conformal. One of the two gauge factor is not asymptotically free in the UV. We will discuss the
UV completion of this theory soon.

4.3 The gravity duals

We now investigate the KS solution corresponding to a set of N physical D3-branes and M
fractional branes at a conifold singularity. The corresponding gauge group is SU(N +M)×SU(N).
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As usual, all the U(1) factors are not described by the AdS/CFT correspondence. As we will see
the KS solution is also continuously connected to MN.

The type IIB solution corresponding to N physical branes is AdS5 ×T 1,1. The addition of M
fractional branes induces the presence of a RR F(3) flux. Since we have a D5-brane wrapping the S2

in a space-time with topology R1,3 ×R×S2 ×S3, where the R direction is interpreted as the radial
one, we expect a flux supported on S3:

Z

S3
FRR

(3) = M (4.16)

Since the type IIB equations of motion require

d ∗ (e−φH(3)) ∼ F(3)∧F(5) (4.17)

B(2) cannot vanish: this will induce a radial dependence of the couplings τ1 and τ2 in (4.15) which
is interpreted in the quantum field theory as the running of the couplings with the scale. We may
expect to find a metric of warped form

ds2
10 = h−1/2(t)dx2

4 +h1/2(t)ds2
6. (4.18)

KS found a regular solution that is compatible with all these requirements [8].
A supersymmetric solution with this minimal set of fields and internal metric given by the

conifold one, was found in [59], but it has a naked singularity in the IR. In [8], a regular solution
was found by considering a deformed conifold instead of the original singular one. We will see that
the deformation of the conifold corresponds to the chiral symmetry breaking in the dual field theory.
In terms of complex geometry, the deformation of the singular conifold ∑w2

a = 0 is described by
the equation in C

4

∑w2
a = ε2. (4.19)

The deformation consists in blowing-up an S3 at the apex of the conifold, so to obtain a smooth
manifold. The deformed conifold metric can be written as

ds2
6 =

ε4/3

2 K(t)

[

(dt2 +(ε̃3)
2)

3K3(t)
+

cosh t
2 (e2

1 + e2
2 + ε2

1 + ε2
2)+

1
2 (e1ε1 + e2ε2)

]

, (4.20)

where K(t) = (21/3 sinh t)−1(sinh(2t)− 2t)1/3. In this formula e1 = dθ1 and e2 = −sinθ1dφ1.
Similarly {ε1,ε2,ε3} are the left-invariant forms on S3 with Euler angle coordinates ψ,θ2,φ2

ε1 ≡ sinψsinθ2dφ2 + cosψdθ2 ,

ε2 ≡ cosψsinθ2dφ2 − sinψdθ2 ,

ε3 ≡ dψ+ cosθ2dφ2 ,

dεi = −1
2εi jkε j ∧ εk . (4.21)

We also defined, for convenience, ε̃3 = ε3 + cosθ1dφ1.
The KS solution consists of a metric of the form (4.18), with ds6 as in (4.20), warp factor given

by
h(t) = (gsMα′)222/3ε−8/3

Z ∞

t
dx

xcothx−1
sinh2 x

(sinh2x−2x)1/3, (4.22)
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and antisymmetric fields

B(2) =
gsMα′

4 [( f (t)+ k(t))(e2 ∧ e1 + ε2 ∧ ε1)+(k(t)− f (t))(e2 ∧ ε1 − e1 ∧ ε2)] ,

F(3) =
Mα′

4
[

ε̃3 ∧ (e2 ∧ e1 + ε2 ∧ ε1)+(1−2F)ε̃3 ∧ (e2 ∧ ε1 − e1 ∧ ε2)+F ′dt ∧ (e2
1 + e2

2 + ε2
1 + ε2

2)
]

,

F(5) = F(5) +?F(5),

F(5) = B(2)∧F(3) =
gsM2(α′)2

16 [ f (1−F)+ kF]e1 ∧ e2 ∧ ε1 ∧ ε2 ∧ ε3. (4.23)

The functions of t appearing in the previous formulae read

F(t) =
sinh t − t
2sinh t

,

f (t) =
t coth t −1

2sinh t
(cosh t −1),

k(t) =
t coth t −1

2sinh t
(cosh t +1). (4.24)

The complex dilaton of Type IIB is constant and this allows for a small string coupling everywhere.
KS belongs to a special class of backgrounds where the internal metric is conformally Calabi-

Yau. For such metrics, the condition for supersymmetry requires a constant dilaton and a self-dual
flux ∗G = iG, where G(3) = H(3) + ie−φF(3) [63]. It is easy to check that the condition ∗G = iG is
satisfied by KS.

4.4 Properties of the KS solution

For large values of t (which correspond to the UV limit of the dual gauge theory) it is conve-
nient to introduce the radial coordinate r ∼ et/3. The metric reduces to

ds2
10 → h−1/2(r)dx2

4 +h1/2(r)(dr2 + r2ds2
T 1,1), (4.25)

with h(r) = 81(α′gsM)2

8r4 log(r/rs). It can be viewed, in some sense, as a logarithmic deformation of
AdS5 ×T 1,1. This was the solution first found in [59]. If we would allow r to range in [0,∞) it
would be singular for r = rs. In this limit, the RR and NSNS forms reduce to

F(3) → Mα′

4 ε̃3 ∧ (e2 ∧ e1 + ε2 ∧ ε1), B(2) →
3gsMα′

4 log(r/rs)(e2 ∧ e1 + ε2 ∧ ε1). (4.26)

It is believed that the SU(N + M)× SU(N) theory exhibits a series of Seiberg dualities until it
eventually reduces in the deep IR to pure SU(M). At each step of the cascade, the group is SU(N +

M−kM)×SU(N−kM). The strongly coupled factor SU(N +M−kM) undergoes a Seiberg duality
to SU(N −M− kM), while the other factor remains inert 7. As a result, k is increased by one unit.

7We refer to [66] for a detailed discussion of Seiberg duality. We simply mention that this duality occur for a SU(N)

theory with N f > N + 1 flavors of quark chiral superfields Ai, Āi, i = 1, ...,N f , in the N, N representations. In this case
the theory is dual to another N = 1 SYM with SU(N f −N) gauge group, N f flavors Ci, C̄i, and an extra gauge singlet
chiral superfield N i j interacting by the superpotential W = CNC̄.
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In the KS solution, this can be seen from the UV limit of the RR five-form field strength which can
be rewritten as

F(5) ∼ Ne f f (r)vol(T 1,1), Ne f f (r) = N +
3

2π
gsM

2 log(r/r0). (4.27)

We introduced a convenient reference scale r0 defined so that the effective D3-charge Ne f f (r0) = N.
The logarithmic decreasing of Ne f f with the radius was interpreted in [59] as a decreasing in the
rank of the dual gauge theory group as the theory flows to the IR. At the UV scale r = r0, Ne f f = N
and the dual field theory has SU(N + M)× SU(N) as gauge group. At rk = r0exp(−2πk/3gsM),
with k integer, the dual gauge group is SU(N − kM +M)×SU(N − kM). If N = kM, we thus find
that after k cascade steps the gauge group flows to SU(M), with a subtlety that we will discuss later
on. The UV completion of the theory is somewhat peculiar. The inverse cascade never stops. In a
sense, the UV limit is a SU(∞)×SU(∞) gauge theory.

The metric in eq. (4.25) can be used to study the UV properties of the SU(N + M)× SU(N)

gauge theory when M � N. Indeed, the curvature, which is determined by Ngs at the reference
scale r0, decreases for larger values of r. Moreover, if Mgs is sufficiently small the cascade steps are
well separated. In these conditions, the singular metric (4.25), which is a logarithmic deformation
of AdS5 ×T 1,1, will give a convenient description of the almost conformal theory SU(N + M)×
SU(N). As shown in formula (4.15), the gauge couplings are related to some of the supergravity
moduli

1
g2

1
+

1
g2

2
=

1
4πgs

; 1
g2

1
− 1

g2
2

=
1

4π2gs

(

1
2πα′

Z

S2
B(2)−π

)

. (4.28)

We can consider the D5 branes as wrapped on the S2 with θ1 = θ2,φ1 = −φ2. In the large r limit,
we thus find that the sum of the gauge couplings is constant while (see (4.26)) the difference runs
as

4π2

g2
1
− 4π2

g2
2

= 3M log(r/rs) = 3M log(µ/Λ). (4.29)

The last equality in the above equation requires a specific choice of how to relate the radial co-
ordinate to the energy scale of the field theory. We use the same relation as for the conformal
AdS5×T 1,1 solution, r/rs = µ/Λ, Λ being the IR scale 8. One can show that eq. (4.29) reproduces,
up to orders M/N, the UV gauge theory result obtained from the exact NSVZ beta function [38]
for N = 1 gauge theories. Using formula (4.8) we can indeed write

4π2

g2
1

=
1
2(3(N +M)−N(6−2∆A −2∆B)) ln(µ/Λ),

4π2

g2
2

=
1
2(3N − (N +M)(6−2∆A −2∆B)) ln(µ/Λ). (4.30)

At leading order in M/N, ∆A +∆B = 3/2, which is the result for the conformal case. The difference
of the two equations in (4.30) then reproduces the supergravity result.

For small t the metric approximates to

ds2
10 →

ε4/3

bgsMα′ dxµdxµ + c(gsMα′)

[

1
2(dt2 + t2Ω2)+dΩ3

]

, (4.31)

8The different methods for computing the radius/energy relation give different results [16]. However, if we are only
interested in the leading logarithmic UV behavior all methods agree.
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where b and c are numerical constants and we introduce the parameter ε related to the value of h for
t = 0. The angular part splits in a non-vanishing S3 and a shrinking S2. The curvature is controlled
by the value of gsM, and it is small when this parameter is large. The antisymmetric fields B(2),F(5)

go to zero in the limit, while F3 is supported only by the non-vanishing S3. The fact that F(5) = 0
implies that all the physical branes disappear in the IR. This suggests to interpret the solution as
describing the N = kM case, where the final point of the cascade is an SU(M) theory. The case
where N = kM + p, p = 1, ...,M−1 reduces to an IR theory SU(p)×SU(M + p) and it is believed
to be described by a solution with explicit brane sources.

The theory confines and presents the standard pattern of chiral symmetry breaking. The natural
candidate for a QCD string is a fundamental string. As discussed in Section 2, confinement is
expected because the space-time components of the metric at t = 0 are non-vanishing. The value
of a Wilson loop, indeed, can be computed using a fundamental string coming from infinity, with
endpoints on the boundary at t = ∞. The string will minimize its energy by reaching t = 0 where the
metric components √gxxgtt have a minimum. All the relevant contribution to the energy between
two external sources is then due to a string sitting at t = 0 and stretched in the x direction. The
tension for confining strings α′Ts ∼ h−1/2 is thus of the order ε4/3/gsMα′. We see that the free
parameter ε sets the scale of the confining theory.

Let us now discuss the chiral symmetry. We expect various phenomena:

• The chiral symmetry breaking. In quantum field theory, U(1)R is anomalous and broken
to Z2N by instantonic effects. These non-perturbative effects in the field theory are already
captured at the supergravity level. The existence of an anomaly can be detected with an
UV computation in quantum field theory and therefore should be already visible in the UV
region of the solution [64, 65]. In the KS solution the U(1)R symmetry acts as a rotation
of the complex variables wi; on the metric it acts as a shift of the angle ψ. The UV form
of the metric is invariant under such shift, but this is not the case for the RR two-form
C(2) ∼−Nα′

2 ψsinθdθ∧dφ. In particular, the flux 1
2πα′

R

S2 C(2) varies by −Nδψ under a shift
of ψ. Since the flux is periodic with period 2π, the only allowed transformations are those
with δψ = 2πn

N [64]: the R-symmetry is then broken to the Z2N subgroup ψ → ψ + 2πn/N
(ψ has period 4π). The spontaneous symmetry breaking Z2M → Z2 is manifest in the full
KS solution. Indeed, while the UV metric is U(1)R invariant (the metric of T 1,1), the full
KS metric depends on ψ through cosψ and sinψ, and has in fact only a Z2 invariance under
ψ → ψ + 2π. The breaking is also evident in eq. (4.19) that is not invariant under arbitrary
phase shifts of the wi, but only under wi →−wi.

• Domain walls. In a theory with spontaneous breaking of Z2N and multiple vacua, we expect
the existence of domain walls. In the string solution, they correspond to D5-branes wrapped
on S3, located at t = 0 in order to minimize the energy. One can estimate the tension TDW of
the domain wall from the fact that the metric in the IR is approximately of the form R

7 ×S3

and the radius of the three-sphere goes as
√

eΦ0Nα′. We have

TDW ∼ 1
α′3

Z

S3
e−Φ√G =

e2Φ0N3/2

α′3/2 . (4.32)

Since a fundamental string can end on a D5-brane and the QCD string is a fundamental
string, we see that a QCD string can end on a domain wall.
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The glueball spectrum can be determined by solving the equation of motions of the bulk fields
propagating in the background. The typical glueball masses can be estimated as ε2/3/gsMα′.

4.5 The baryonic branch

The study of glueballs in the KS solution offers interesting surprises. As noticed in [33],
one can find a massless glueball in the spectrum. This implies that the theory has no mass gap.
Strictly speaking, indeed, the theory in the deep IR is not in the same class of universality of
pure SYM N = 1 with gauge group SU(M). In fact, as suggested in [32, 8], the last step in the
duality cascade, corresponding to the gauge group SU(2M)× SU(M) is on the baryonic branch.
We expect that the SU(2M) factor becomes strongly coupled while the SU(M) factor, which is
IR free, is still weakly coupled. Ignoring for the moment the SU(M) factor, the SU(2M) theory
has a number of flavors equal to the number of colors. In this situation, we cannot simply apply
a Seiberg duality [66]. Let us analyze in details the vacua of this theory. We can form mesonic
operators (Ni j)

β
α with SU(2)×SU(2) indices i, j and SU(M) flavor indices, and baryonic operators

that are SU(2)×SU(2) and flavor invariant

B ∼ εα1α2...α2M(A1)
α1
1 (A1)

α2
2 . . .(A1)

αM
M (A2)

αM+1
1 (A2)

αM+2
2 . . .(A2)

α2M
M (4.33)

B̄ ∼ εα1α2...α2M(B1)
1
α1(B1)

2
α2 . . .(B1)

M
αM

(B2)
1
αM+1(B2)

2
αM+2 . . .(B2)

M
α2M

(4.34)

The theory with number of flavors equal to the number of colors has a classical moduli space of
vacua that can be parametrized by baryons and mesons subject to the classical constraint DetN =

BB̄ . In the quantum theory this relation is corrected to [66]

DetN −BB̄ −Λ4M
2M = 0 (4.35)

where Λ2M is the UV scale of the gauge group SU(2M). We can write the superpotential of the
SU(2M)×SU(M) theory in terms of the new variables as

W = λTr(Ni jNpq)εipε jq +X(DetN −BB̄ −Λ4M
2M) (4.36)

where X is a Lagrangian multiplier. We have two types of vacua: a mesonic branch where B = B̄ =

0 while DetN = Λ4M
2M and a baryonic branch where X = N = 0,BB̄ = −Λ4M

2M. The two branches
are disjoint and of complex dimension M and one, respectively. The fact that the global symmetry
SU(2)× SU(2) is typically broken in a mesonic vacuum strongly suggests that the KS solution
describes a point on the baryonic branch 9. In such vacua, the U(1)B global symmetry (Ai → eiαAi,
B j → e−iαB j) is explicitly broken. The baryonic branch has complex dimension 1, and it can be
parametrized by ζ:

B = iζΛ2M
2M, B̄ =

i
ζ

Λ2M
2M . (4.37)

Note that the U(1)B corresponds to changing ζ by a phase. The Goldstone boson associated to the
spontaneous breaking of the U(1)B symmetry was identified in the supergravity dual as a massless
pseudo-scalar bound state (glueball) in [33]. By supersymmetry the Goldstone boson is in a N = 1

9It is expected that the supergravity description of the mesonic branch involve M physical branes moving on the
deformed conifold.
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chiral multiplet; hence there will be a massless scalar mode that must correspond to changing ζ
by a positive real factor. This is a modulus of the theory whose expectation value induces a one
parameter family of supersymmetric deformations.

If this interpretation is correct there must exists a one-parameter family of supersymmetric
solutions of type IIB containing the KS solution as a special point. A linearized deformation of KS
was indeed found in [33] and the full family in [34]. The family belongs to an ansatz for metrics
with R×S2 ×S3 topology proposed by Papadopoulos and Tseytlin (PT) [62],

ds2
E = e2Adxµdxµ + e6p−xdt2 +ds2

5 =

= e2Adxµdxµ +
6

∑
i

E2
i (4.38)

where p, x and A are functions of the radial coordinate t only 10. The vielbeins are defined by

E1 = e
x+g

2 e1 = e
x+g

2 dθ1 ,

E2 = e
x+g

2 e2 = −e
x+g

2 sinθ1dφ1 ,

E3 = e
x−g

2 ε̃1 = e
x−g

2 (ε1 −a(t)e1) , (4.39)
E4 = e

x−g
2 ε̃2 = e

x−g
2 (ε2 −a(t)e2) ,

E5 = e−3p− x
2 dt

E6 = e−3p− x
2 ε̃3 = e−3p− x

2 (ε3 + cosθ1dφ1)

where g and a are also functions of the radial coordinate only. All the relevant quantities are defined
in Section 4.3.

The fluxes of the PT ansatz are given by

H = h2 ε̃3 ∧ (ε1 ∧ e1 + ε2 ∧ e2)+dt ∧
[

h′1(ε1 ∧ ε2 + e1 ∧ e2)

+χ′ (e1 ∧ e2 − ε1 ∧ ε2)+h′2 (ε1 ∧ e2 − ε2 ∧ e1)
]

, (4.40)
F3 = P

[

ε̃3 ∧
(

ε1 ∧ ε2 + e1 ∧ e2 −b(ε1 ∧ e2 − ε2 ∧ e1)
)

+b′ dt ∧ (ε1 ∧ e1 + ε2 ∧ e2)
]

, (4.41)
F5 = F5 +∗F5 , (4.42)
F5 = K e1 ∧ e2 ∧ ε1 ∧ ε2 ∧ ε3 . (4.43)

where h1, h2, b, χ and K are function of the coordinate t, and primes always denote derivatives with
respect to t. The function K is related to h1, h2 and b by K(t) = Q+2P[h1(t)+b(t)h2(t)], where the
constants Q and P are proportional to the number of regular and fractional D3 branes respectively.
In particular, P = −Mα′/4. The fluxes and the expression for K are chosen in such a way that they
automatically satisfy the Bianchi identities. The topology of the ansatz is R× S2 × S3, and it has
SU(2)×SU(2) symmetry.

10We found it more convenient to use slightly different conventions than PT: our radial variable t is related to the PT
one by du = e−4pdt and similarly the function A corresponds in PT to 2p−x+2A. We also define a new set of vielbeins
Ei. We also use the ansatz for the metric in string frame, while PT work in Einstein frame.
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The KS solution fits in the PT ansatz with

A = −1
4 lnh a = − 1

cosh t

e6p+2x =
3
2 (coth t − t csch2t) eg = tanh t

e2x =
(sinh t cosh t − t)2/3

16 h eφ = eφ0 . (4.44)

where h is given in formula (4.22), and

h1 =
1
2(coth t − t coth2 t)eφ0 b = − t

sinh t

h2 = −(−1+ t coth t)
2sinh t

eφ0 χ = 0 . (4.45)

The PT ansatz accommodates both KS and MN solutions. Moreover there is an entire family
of supersymmetric solutions interpolating between KS and MN [34]. The solution can be deter-
mined using the supersymmetry conditions found in [67] in terms of SU(3) structures. The internal
manifold is complex and it is a generalized Calabi-Yau, according to Hitchin’s definition [68], since
it has a never vanishing (3,0) form conformally closed; it is not however Kahler. The condition
that the manifold is complex gives a functional relation between a and g

e2g +1+a2

2a
= −cosh t (4.46)

The other supersymmetry conditions give a pair of coupled first-order differential equations for the
quantities a and v = e6p+2x

a′ = −
√
−1−a2 −2a cosh t (1+a cosh t) csch t

v
− a sinh t (t +a sinh t)

t cosh t − sinh t
,

v′ =
−3a sinh t√

−1−a2 −2a cosh t

+v
[

−a2 cosh3 t +2at coth t +acosh2 t (2−4 t coth t)+ cosh t
(

1+2a2

−
(

2+a2) t coth t
)

+ t csch t
]

/
[(

1+a2 +2acosh t
)

(t cosh t − sinh t)
]

(4.47)

and a set of algebraic and differential equations that allow to determine all the other unknown
functions in the metric and fluxes in terms of the quantity a,

b = − t
sinh t

h1 = h2 cosh t

h′2 = −
(

t −a2t +2at cosh t +a2 sinh2t
)

(1+a2 +2acosh t)(−1+ t coth t)
h2

χ′ =
ah2 (1+acosh t)(2t − sinh2t)

(1+a2 +2acosh t)(−1+ t coth t)

A′ = −(−1+ t coth t)cscht (−cosh t + tcscht)
8 e−2x+2φ
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sinw = − 2ex−φ (1+acosh t)√
−1−a2 −2acosh t (−1+ t coth t)

cosw =
2h2 sinh t

eφ (1− t coth t)
= ηeφ (4.48)

The previous equations can be solved analytically only by a perturbative expansion around KS.
However, the existence of a regular second order solution suggests that there is indeed a one pa-
rameter family of KS deformations. This expectation can be confirmed by a numerical analysis.
There is a family of regular solutions that can be parametrized by the constant appearing in the IR
expansion for a

a = −1+ξt2 +O(t4) . (4.49)

ξ ranges in the interval [1/6,5/6], with ξ = 1/2 corresponding to KS. The solution depends on
two parameters, ξ and the value of the dilaton at t = ∞, that are interpreted as the baryonic VEV
and the value of the diagonal coupling constant in the dual gauge theory. The range [1/2,5/6] is
related to [1/6,1/2] by a Z2 symmetry that exchanges (θ1,φ1) with (θ2,φ2) and reverse sign to
some of the type IIB forms; the KS solution is the symmetric point. All the arbitrary constants in
the supersymmetry equations (except for an additive constant for the dilaton) are fixed in terms of ξ
by requiring IR regularity and the absence of an asymptotically flat region in the UV. For all values
1/6 < ξ ≤ 1/2 the solution is asymptotic in the UV to the KS solution and the dilaton is bounded.
More amazingly, by fixing the value of the dilaton at t = 0 we can obtain an interpolating flow
between KS and MN. For ξ → 1/6, indeed, the asymptotic suddenly changes, the dilaton blows up
in the UV and the solution smoothly approaches MN.

The previous results require some explanation. The two-parameter family of solutions we
have described contains the dual description of the baryonic branch of the KS theory. According to
the standard philosophy of the AdS/CFT correspondence [69], different vacua of the same theory
correspond to solutions with the same asymptotic behavior. The baryonic branch is then obtained
by varying the IR parameter ξ while keeping fixed the value of the dilaton at t = ∞. The Z2
symmetry of the supergravity solution is interpreted in the gauge theory as the symmetry that
exchange B with B̄; the KS solution is then interpreted as the point on the baryonic branch where
B = B̄ = iΛ2M

2M. For the other values of ξ we obtain the full baryonic branch (4.37). This does
not necessarily imply that the endpoint of the baryonic branch corresponds to the MN theory 11.
As can be seen numerically [34], when ξ → 1/6 with fixed asymptotic dilaton the radius of the
three-sphere goes to zero, implying large curvatures in the solution. This means that far along the
baryonic branch the solution becomes strongly coupled. On the other hand, it is still true that by
varying both ξ and the asymptotic value of the dilaton we can connect KS and MN in a controllable
way (at least for finite t). MN can be reached from KS by moving both in space of vacua and in the
space of theories. This results certainly requires an interpretation.

As we saw, there is an additional massless mode in the IR dynamics of the KS theory beside
the confined SU(M) factor. The reader is already alerted that, in any event, these theories should
only be considered as cousins of the real pure N = 1 SYM. In the supergravity approximation,
gsM → ∞ and so the cascade steps are not well separated and the additional massive fields of
the original theory SU(N + M)× SU(M) are not decoupled. As usual, we can get a pure SYM

11We thank Igor Klebanov and Anatoly Dymarski for pointing out this.
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theory only beyond the supergravity regime. The supergravity solution is dual to a four-dimensional
gauge theory with a large number of massive matter fields. The absence of mass gap motivates
the question whether these theories are really connected to pure SYM theory. This connection
necessarily involves a stringy limit and it is outside our investigative ability. However, by noticing
that the stringy limit corresponds to separating the cascades, we may expect that by separating the
scales Λ2M and ΛM of the two IR groups also the Goldstone boson will decouple. In this case, a
full string version of the KS solution will reproduce pure N = 1 SYM theory.

It would be quite interesting to see whether the KS solution can be generalized to the case
of fractional branes on other toric singularities. In particular, since we know the metrics for Y p,q

and Lp,q,r it is mandatory to examine in details these cases. A first step in this direction was taken
in [48], where a singular solution describing the UV behavior of the theory in the Y p,q case was
found. If a regular solution exists, it would be necessarily more complicated than KS. It is known,
in fact, that there are no CY deformations for the cones over Y p,q and smooth Lp,q,r. We cannot
then obtain a supergravity solution in the simple class described in [63], with constant dilaton and
a conformally CY metric. A solution would necessarily involve at least an SU(3) structure, or
even worse, since a solution would probably involve a non complex manifold. A more prosaic
possibility is that the gauge theory has no supersymmetric vacuum at all. All these theories flow
in the infrared to cases where at least one gauge group has number of flavors less than the number
of colors. In this situation, we expect the generation of a non perturbative ADS superpotential
that will destabilize the vacuum, like in SQCD. This situation seems to be generic in the cases
of Y p,q and Lp,q,r [70, 51]. It also seems that in explored cases where the CY singularity has no
complex deformation, the corresponding gauge theory has no supersymmetric vacuum. It would
be quite important to understand this experimental observation in more details and to look for cases
of metrics admitting deformations.

5. A link to string compactifications

The relation between holography and the Randall-Sundrum (RS) models [71, 72] is known
since the first days of the AdS/CFT correspondence [73, 74]. In taking the near horizon geometry
we also create large warp factors that may serve as an explanation of the hierarchy of physical
scales. In compactifications with fluxes is not difficult to exhibit local throats, i.e. region with
a sensible warp factor. In particular, the KS solution is used as the prototype of such throats.
We refer to other lectures in this school for a detailed discussion of the huge subject of string
compactifications with fluxes and we briefly describe how the KS solution can be used for extra-
dimensions phenomenology.

Warped solutions with a throat of the form

ds2 = h−1/2(r)dxµdxµ +h1/2(r)(dr2 + r2ds(5)) (5.1)

are common in string theory. They can be generated by either a stack of branes or by using solutions
with RR fluxes. The two pictures (branes versus fluxes) are dual to each other in the sense of
the AdS/CFT correspondence. One can take many examples out of the AdS/CFT literature. In
this context one usually consider non-compact solutions with a radial coordinate r. To obtain a
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compact model, one truncates the metric at a certain UV scale rUV and glues a compact manifold
for r > rUV .

As discussed in [75], the Einstein equations for a compact manifold without brane sources
imply the vanishing of all fluxes and a constant warp factor. Fluxes and non-trivial warping can
be introduced only in the presence of sources. Moreover, as shown in [75], some of these sources
must have negative tension. This is not a great problem in string theory, where many consistent
objects, for example orientifold planes, may have negative energy. There are further constraints
from charge conservation. With a compact manifold, the total D3 charge must vanish. Integrating
the F(5) equation of motion

dF(5) = H(3)∧F(3) + sources (5.2)

we get the condition
Z

H(3)∧F(3) +Qsources
D3 = 0 (5.3)

Contributions to Qsources
D3 may come from physical D3 branes, orientifold planes O3 or induced D3

charges from wrapped branes.
Example 5.1 (the RSII model): If we choose h(r) = R4/r4 and the metric for the round five-sphere
for ds(5), we obtain the product of AdS5 × S5. The solution also contains N units of flux for the
RR form F(5) along S5. This choice of warp factor corresponds to a maximally supersymmetric
solution of string theory and it is equivalent to the RSII model [72]. The compact manifold glued
for r > rUV corresponds to an explicit realization of the Plank brane of the RS scenario. We may
choose, for example, the orientifold T 6/Z2 [73]. Here h(r) = R4/r4 is obtained in the vicinity of a
stack of N D3 branes. H(3) = F(3) = 0 and the positive D3 contribution to Qsources

D3 is compensated
by the negative contribution of orientifold planes O3 (for N not too large), which also provide the
negative tension required by Einstein equations.
Example 5.2 (the RSI model): The RSI model [71] is obtained by truncating the metric (5.1) at
r = r0 by the insertion of an IR brane. In contrast to the RSII model, the warp factor is now bounded
above zero and has a minimal value that has been used to study the hierarchy problem. The IR brane
can be replaced by any regular geometry that has a non-zero minimal warp factor, for example, the
KS solution. The non-compact KS solution can be embedded in a a genuine string compactification
as explained in [75]. The most convenient way is to consider F-theory solutions that can develop
a local conifold singularity. An explicit example is provided in [75]. In the compact solution, the
R-R and NS-NS two-forms have integer fluxes along the S3 cycle of the conifold (call it A) and
along its Poincaré dual B, respectively:

1
(2π)2α′

Z

A
F(3) = M,

1
(2π)2α′

Z

B
H(3) = −K, (5.4)

In order to avoid large curvature in the solution that would invalidate the supergravity approxima-
tion, the integers M and K must be large. The relation to RSI is pictured in Figure 6. This time,
the negative contribution to Qsources

D3 and the negative tension come from the D7 branes of the F
theory compactification. In particular, the total Qsources

D3 can be computed in purely geometrical
terms using the Euler number of the fourfold X , so that relation (5.3) simplifies to

KM− χ(X)

24 = 0 (5.5)
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In the specific example chosen in [75], χ(X)/24 = 72, but χ(X)/24 can be much larger for known
fourfolds.

r=r
UV

r=r
IR

R  *  S
3 3

r=r
UV r=r

IR

2A(r)e

r

UV IR

A
B

CY

D7

Figure 6: The CY compactification with a throat and its corresponding interpretation in terms of a simplified
RSI model.

An important property of these compactifications with fluxes is that all the complex structure
moduli of the Calabi-Yau are stabilized. The superpotential for type IIB compactifications indeed
reads [76]

W =
Z

(F(3)− τH(3))∧Ω (5.6)

The presence of the holomorphic three-form in this formula shows that the complex structure mod-
uli will generically get a mass. We can study, as an example, the modulus of the deformed conifold.
This can be identified with the parameter ε appearing in equation (4.19) and governing the volume
of the three cycle. More precisely, by defining

z =
Z

A
Ω (5.7)

a standard geometrical result gives, for the conifold,
Z

B
Ω =

z
2πi

logz+holomorphic (5.8)

The minimization of the superpotential (5.6)

W ∼ M
Z

B
Ω−Kτ

Z

A
Ω → W ′ ∼ M

2πi
logz− i

K
gs

+ ... (5.9)

gives
z ∼ e−

2πK
Mgs (5.10)

z determines the hierarchy of energy scales. Its value is exponentially small if K/Mgs � 1 (thus
justifying the neglected terms in the superpotential). This condition is easily obtained with reason-
able values for the fluxes and the string coupling; in the [75] example with KM = 72 we can choose
M and K of order 10 and gs ∼ 0.1. Recall that z is related to the parameter ε in the KS solution.
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In the AdS/CFT context, this is a free parameter determining the scale of the IR confining gauge
theory. We see that upon compactification the value of ε has been fixed. This can be understood
by considering that, after compactification, the KS solution has a UV cut-off where N = KM. The
theory will then undergo exactly K cascades. Since each cascade takes place on a ratio of energy
scales of order e2π/3gsM, we see that the total hierarchy is indeed z1/3 ∼ e−2πK/3gsM .

The Kahler moduli, on the other hand, are not stabilized by the superpotential (5.6). The scalar
associated with the volume of the internal manifold, for instance, will always remain massless.
Its stabilization is usually obtained with non-perturbative superpotentials (generated by gaugino
condensations on wrapped D7 branes or similar phenomena). We refer to the lectures on string
compactifications for more details. We just finish by noticing that the KS throat has been used for
many interesting phenomenological or cosmological scenarios (we deliberately choose not to give
full references to the huge literature on these subjects):

• The realization of metastable de-Sitter vacua in string theory [77]. This is obtained by intro-
ducing anti D3-branes in the IR part of the geometry. This simple idea opened an avenue to
the literature on the landscape and the statistical study of string vacua.

• The realization of models for inflation [78].

• The resurrection of cosmic strings [79].
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