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The HPQCD collaboration has a program for determining the fundamental constants of the Stan-

dard Model Lagrangian from lattice QCD. The most accurate method of doing this uses the

n f = 2+ 1 improved staggered MILC ensembles with chiral fitting and multi-loop perturbative

renormalisation to connect to the continuumMS scheme. This program has already been very suc-

cessful with the recent strong coupling constant determination at three-loops from 28 observables

at three lattice spacings, and the one-loop light quark masscalculation last year. Here a prelimi-

nary result is presented for the first-ever lattice determination of the two-loop multiplicative quark

mass renormalisation. The perturbative calculation involved was automated in the generation of

the Feynman rules, and the generation and coding of all of theroughly 30 Feynman diagrams. The

full formal framework for lattice quark mass renormalisation is given, including the cancellation

of infrared divergences in intermediate diagrams. The result was checked by evaluation in three

separate gauges and by two authors independently, showing the incredible flexibility and power

of this perturbative methodology. Our preliminary result for the two-loop perturbative matching

factor, and of systematic errors associated with higher-orders, givesMS masses at a 2 GeV scale

of ms = 87(0)(4)(4)(0) MeV, and1
2(mu + md) = 3.3(0)(2)(2)(0) MeV, where the respective un-

certainties are from lattice statistical, lattice systematic, perturbative, and electromagnetic and

isospin effects. The perturbative errors are a factor of twosmaller than in our previous study, and

we anticipate reducing this somewhat further from additional analysis of the systematics.
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1. Introduction

The strong sector of the Standard Model Lagrangian containsa number of inputs that are
a priori unknown and must be determined from experiment. For these fundamental constants;
the quark masses and the strong coupling constant, our knowledge is currently rather imprecise.
Their determination is complicated by confinement in QCD, sothe quarks and gluons cannot be
observed as isolated particles. We can only determine thesefundamental parameters by solving
QCD for observable quantities such as hadron masses, as functions of the quark masses and the
coupling (or alternatively, the lattice spacing). The HighPrecision QCD (HPQCD) collaboration
has a program for calculating the values of these parametersusing the numerical techniques of
lattice QCD simulations combined with multi-loop perturbative renormalisation. Previously the
masses have been determined at the one-loop level [1, 2, 3], and the strong coupling constant was
determined from one observable in a two-loop calculation [4]. Recently the determination of the
strong coupling was improved with three-loop perturbativematching and with input from 28 lattice
observables in simulations at three different lattice spacings, resulting in an accuracy of just over
1% [5, 6]. This writeup covers progress on the determinationof the light quark masses, where we
push the perturbative matching calculation to two loops, that is, next-to-next-to-leading order.

Precise knowledge of quark masses constrains Beyond the Standard Model scenarios as well
as providing input for phenomenological calculations of Standard Model physics. The strange
quark mass, in particular, is needed for various phenomenological studies, including the important
CP-violating quantityε ′/ε [7], where its uncertainty severely limits the theoreticalprecision.

Previously, shortcomings in the formulation of QCD on the lattice and limitations in comput-
ing power have meant that lattice calculations were forced to work with an unrealistic QCD vac-
uum that either ignored dynamical (sea) quarks or included only u andd quarks with masses much
heavier than in nature. This condemned determinations of most phenomenologically-important
quantities, including the quark masses, to rather large systematic errors (10–20%) arising from the
inconsistency of comparing such unrealistic theories withthe necessary experimental input. The
determination presented here uses simulations with the improved staggered quark formalism that
generates a much more realistic QCD vacuum with two light dynamical quarks and one strange
dynamical quark. Staggered quarks are fast to simulate. They keep a remnant of chiral symmetry
on the lattice, which prevents the occurrence of exceptional configurations, and which allows sim-
ulations at much smaller quark masses. The bare quark massesin the simulations were fixed using
chiral perturbation theory to reliably extrapolate lattice results to the physical point [1]. Working
in the region of dynamicalu/d quark masses belowms/2 and down toms/8 gives control of chiral
extrapolations and avoids the large systematic errors fromdynamical quark mass and unquenching
effects that afflicted previous studies using other latticediscretisations.

The dominant systematic error in the determination of theMS masses in [1] came from un-
known second- and higher-orders in the perturbative matching. Some progress was reported on the
chiral fits at the lattice meeting [8], however that analysisis not used here; we continue to employ
the bare quark masses given in [1]. Significant progress on the reduction of the systematic errors
is reported here, due to our computation of the second-orderperturbative matching coefficient, the
first determination at this order of a “kinetic” quark mass inany lattice theory (the zero-point ad-
ditive renormalisation for Wilson fermions was previouslydetermined at two-loops in [9], and for
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static quarks in [10]).
The staggered quark formalism does present several challenges, which have been tamed with

an aggressive program of perturbative improvement. With the naïve staggered action large dis-
cretisation errors appear, although they are formally onlyO(a2) or higher (a is the lattice spacing).
In the case of the unimproved staggered action the renormalisation of lattice operators to match
to continuum quantities were also frequently large and poorly convergent in perturbation theory.
This was true, for example, for the mass renormalisation that is needed here. It turns out that both
problems have the same source, a particular form of discretisation error in the action, called “taste
violation,” and both are ameliorated by use of the improved staggered formalism [11]. The per-
turbation theory then shows small renormalisations [12, 13, 14, 15] and discretisation errors are
much reduced [16, 17, 18]. Empirically, taste violation remains the most important discretisation
error in the improved theory, despite being subleading to “generic” discretisation errors. The Gold-
stone meson masses we will discuss here are affected by this at one-loop in the chiral expansion.
Staggered chiral perturbation theory (SχPT) [19, 20, 21, 22] allows us to control these effects and
reduce discretisation errors significantly.

A potentially more fundamental concern about staggered fermions relates to the need to take
the fourth root of the quark determinant, in order to convertthe four-fold duplication of “tastes”
into one quark flavor. One might imagine that the fourth root introduces nonlocalities which pre-
vent decoupling of the ultraviolet modes of the theory in thecontinuum limit. However, evidence
is amassing that demonstrates that the properties of the staggered theory, with the fourth root,
are equivalent to a one-flavor theory, up to the expected discretisation errors. These are due to
short-distance taste-changing interactions, which are mediated by high-momentum gluons [11]
(the locality of the free-field staggered theory is trivial,and is made manifest in the “naive” basis
used in [11]). One should not be surprised that nonlocalities do not arise, precisely because the
staggered quark matrix is diagonal in the taste basis, up to those small, short-distance (and cal-
culable) corrections. It has been demonstrated that perturbative improvement of staggered actions
correlates exceedingly well with non-perturbatively measured properties of the staggered fermion
matrix, providing clear support for the correctness of the fourth-root procedure. This includes the
measured pattern of low-lying eigenvalues of the staggeredmatrix [23, 24, 25], and the measured
pattern of taste-violating mass differences in the non-chiral pions [26].

The rest of this paper is organised as follows. The methodology of the calculation is discussed
in the following section, including a general discussion ofhow to obtain the matching factor which
connects the bare quark massm0(a) to theMS massmMS(µ), using the pole mass as an intermediate
quantity. We also derive the two-loop anomalous dimension for the bare quark mass in the lattice-
regularised theory, and give complete results for the two-loop matching coefficients. Section 3
gives preliminary results for the light quark masses, with apreliminary analysis of the systematic
uncertainties, including a technique to make a rough estimate of the third-order perturbative cor-
rection. Section 4 compares our results with other recent determinations of the strange-quark mass.
An appendix provides some additional information concerning the evaluation of the multi-loop
diagrams, including explicit expressions for the two-loopquark mass renormalisation in terms of
the 1PI self-energy, a discussion of the techniques used forgenerating and evaluating the neces-
sary multi-loop integrands, and some detailed numerical results which provide an indication of the
many consistency checks that we have applied to our results.
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2. Structure of Calculation

The quark masses are not physically measurable, and as such are only well-defined in certain
renormalisation schemes, such as theMS massmMS(µ), evaluated at some convenient scaleµ . The
light quarkMS masses are determined here by multiplying the chirally-extrapolated bare masses
in lattice units,am0, by the inverse lattice spacinga, and by the appropriate perturbative matching
factorZm(µa,m0a), which we compute to two-loop order:

mMS(µ) =
(m0a)

a
Zm(µa,m0a), (2.1)

where the bare massm0(a) is cutoff dependent. The bare masses used here were determined in
an extensive chiral perturbation theory analysis of the MILC Asqtad data that was discussed in [1,
27, 28, 29]. These bare masses were previously used with the one-loop perturbation theory result
for Zm to extract theMS masses in [1]; the final result for the strange quark mass reported there
was 76(0)(3)(7)(0) MeV where the respective errors are from: statistics; simulations systematics
of which the most important are chiral fitting and lattice spacing; an estimate of the unknown
two-loop perturbative errors and an estimate of the uncertainty due to electromagnetic and isospin
contributions to the pion and kaon. That the error coming from the lattice spacinga is so small
is a distinguishing feature of this calculation. The lattice spacinga is one of the five simulation
parameters, and an important one because it sets the simulation’s mass scale. In our earlier light
quark masses andαs analyses, we set the lattice spacing by comparing a simulated ϒ mass splitting
(e.g., ϒ′−ϒ) with experiment. Here we continue this practice, althoughthe lattice spacings derived
from ourϒ splitting have been shown to agree with spacings derived from a wide variety of other
physical quantities: ten in all, including the pion and kaonleptonic decay constants, theBs mass,
and theΩ baryon mass [4, 30]. All of these different quantities agreeon the lattice spacing to
within 1.5–3%.

The largest error in our previous determination of the quarkmasses [1] was from the pertur-
bative matching. Here that is addressed by the calculation of Zm at two loops. We do this in two
stages, using the pole massM as a matching quantity to connect the lattice- andMS-regularisation
schemes. We also use our previous determination of the relation between the lattice bare coupling
and the renormalised couplingαV (q∗), defined by the static potential, to reorganise both sides of
the matching equation into series in terms ofαV (q∗) at an appropriately determined scale.

We begin by recalling the relation between theMS mass and the pole massM, which is known
through three loops [31, 32, 33, 34, 35]. We require it to second order, a result that was first
obtained in [32] (expressions for the relation at arbitraryµ are conveniently given in [34])

mMS(µ) = M

[

1+ z1

( µ
M

) αMS(µ)

π
+ z2

( µ
M

) α2
MS

(µ)

π2 + . . .

]

, (2.2)

where the one- and two-loop coefficient functionsz1(µ/M) and z2(µ/M) are reduced to a set
of terms with different colour structures [in the followingCF = (N2

c − 1)/(2Nc), CA = Nc, and
T = 1/2]

z1 = CFzF (2.3)

z2 = C2
FzFF +CFCAzFA +CFT nℓzFL +CFT zFH , (2.4)
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and where the contributionzFH from an internal quark loop with the same flavor as the valence
quark is split off from the contributionzFL of nℓ internal quark loops with different flavor (these are
taken here to be degenerate in mass, though this is easily generalised). The total number of flavors
is n f = nℓ +1. The individual functions are given by

zF = −1− 3
4ℓµM, (2.5)

zFF = 7
128−

15
8 ζ2−

3
4ζ3 +3ζ2 log2+ 21

32ℓµM + 9
32ℓ

2
µM, (2.6)

zFA = −1111
384 + 1

2ζ2 + 3
8ζ3−

3
2ζ2 log2− 185

96 ℓµM − 11
32ℓ

2
µM, (2.7)

zFL = 71
96 + 1

2ζ2−2∆(rsea)+ 13
24ℓµM + 1

8ℓ2
µM, (2.8)

zFH = 71
96 + 1

2ζ2−2∆(1)+ 13
24ℓµM + 1

8ℓ2
µM, (2.9)

whereℓµM ≡ log(µ2/M2), and where the function∆(r) gives the dependence of the renormalisation
factorszFL andzFH on the quark mass in an internal fermion loop (sea and valence, respectively),
with rsea= msea/mvalence. An exact integral expression for∆(r) can be found in [32] and it is plotted
in the appendix.

Next we outline the computation of the relation between the pole massM and the bare quark
massm0(a) in the lattice-regularised theory, which has the form

M = m0
[
1+ αL (A11 logm0a+ A10)+ α2

L

(
A22 log2m0a+ A21 logm0a+ A20

)
+ . . .

]
. (2.10)

The coefficients of the logarithms are determined by the two-loop anomalous dimension inm0(a),
which in turn can be determined from the known anomalous dimension of theMS mass, as de-
scribed below. We have previously computed the one-loop matching factor, with the result [1, 12]
A10≈ 0.5432 (neglecting corrections ofO((am0)

2)). What is new in this paper is the determination
of the two-loop termA20.

As with the two-loop continuum matching factor in (2.2),A20 depends on the number of quark
flavors in the sea, and on the ratios of the sea quark massesmseato the valence quark massmvalence.
However, as we demonstrate explicitly in the appendix, the mass dependence inA20 cancels pre-
cisely in the matching to the continuum relation (2.2) formsea/mvalence in the range necessary.
This follows from the fact that, in the limit where the energyscales are large, the net renormal-
isation factor connectingm0(a) to mMS(µ) probes internal loops at scales large compared to the
internal quark masses; hence the dependence on quark massesof the intermediate renormalisa-
tion factors connecting to the pole massM are infrared effects that are identical in the lattice- and
MS-regularised theories.

Before we give our results forA20, and the final matching factorZm in (2.1), we consider how
to determine the coefficients of the logarithmic terms in (2.10). The pole mass is an RD invariant
(equivalently does not depend ona) so taking logs and differentiating with respect to loga, and
neglecting any scale dependence in the coefficientsAnm (which would arise as discretisation errors
that go as powers ofm0a . 0.05, which are negligible for our purposes), one has

0 =
d logm0

d loga
+

d
d loga

{[
· · ·

]
−

1
2

[
· · ·

]2
}

, (2.11)
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where the square bracket is from (2.10), and the first term above can be identified with the anoma-
lous dimension equation:

d logm0

d loga
≡ γ0 αL(a)+ γL

1 α2
L(a)+O(α3

L) (2.12)

The L’s indicate the lattice-regularisation scheme. The sign comes from differentiating with re-
spect to the logarithm of the lattice scalea−1 (momentum units), instead ofµ . Only the leading
term in the anomalous dimension is scheme independent,γ0 = 3CF/(2π). Comparison of the two
preceding equations leads to the identification

A11 = −γ0, A22 =
1
2

A2
11−A11

β0

4π
, A21 = −γL

1 + A2
11−A10

(
β0

2π
−A11

)
, (2.13)

where theβ -function arises from an implicit derivative of the bare lattice coupling in (2.11) (β0 =

11− 2
3n f ). It remains to determineγL

1 . This can be found from the knownMS anomalous dimen-
sion,

−
d logmMS

d logµ
≡ γ0αMS(µ)+ γMS

1 α2
MS(µ)+O(α3), γMS

1 =
101
12π2 −

10
36π2 n f , (2.14)

making the substitutionµ = a−1, and using the relationsmMS(a−1)= m0(1+Cmα), andαMS(a−1)=

αL(1+CααL). By comparison to (2.12) we obtain

γL
1 = γMS

1 +Cαγ0−Cm
β0

2π
. (2.15)

The one-loop renormalisation constantsCm = Z(2)
m (µ = 1/a) = 0.1188 andCα = 4.753−0.3316n f

for the improved gluon and staggered quark actions have beenpreviously calculated [1, 12, 5, 6].
Knowing the logarithmic terms due to the lattice anomalous dimension provides a useful cross-

check on our evaluation of the two-loop renormalisation factor (2.10). We compute the two-loop
lattice diagrams as a function ofm0a, and subtract the known logarithms, in order to isolate the
remaining termA20, which must be finite asm0a → 0. Additional checks are provided for diagrams
which have a leading log2(am0) term, which arises from the infrared limit of both the outer and
inner loop integrals, and which is therefore an infrared quantity; the coefficients of the double loga-
rithms in the individual diagrams are available in Feynman gauge from the originalMS calculation
of Tarrach [31], and we have verified that these are reproduced in our lattice calculation.

The necessary two-loop diagrams are shown in figure 1. Further details on our evaluation of
these diagram are given in the appendix. We can easily evaluate them for various gluon and quark
actions, using our automated methods for generating the lattice Feynman rules. In this paper we
give results for the Symanzik improved gluon with improved staggered quarks (Asqtad) and SU(3).
Our result for the matching termA20 is, in the limit of vanishing sea quark mass,

A20 = 6.09−0.15nℓ −0.03, (2.16)

where the last term corresponds to an internal quark loop containing one (massive) valence quark
flavor. The uncertainties arise from a numerical evaluationof the two-loop integrals.
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D3 D4 D5 D6

D7-11 D12 D13

D14-18 D19 D20

D21 D22 D24

D25 D26 D27 D28

CT1 CT2 CT3 CT4 CT5 CT6

Figure 1: The two-loop diagrams that contribute to the two-loop mass renormalisation. The numbering is
consistent with [9]. Blue lines are valence quarks (on-shell externally), green are gluons and red are sea
quarks. The large brown vertices are stand-ins for the five one-loop gluon propagator diagrams (gluon and
ghost bubbles and tadpoles and the measure term). We evaluate all five simultaneously with an internal
subtraction. The crosses represent interaction vertices generated by perturbative expansion of tadpole and
other renormalisation factors in the gluon and quark actions.

When the lattice renormalisation factor (2.10) connectingthe bare mass to the pole mass is
combined with the equivalent continuum expression (2.2) for the connection to theMS mass, the
logs ofm0 drop out, as expected, since these are infrared effects thatare identical in the intermediate
lattice and continuum matchings. We also reorganise the couplings to theαV scheme at some scale
q∗, whereq∗a is a function ofµa that is determined according to the BLM scheme [39]. This
leaves an expression with logarithms only ofµa andq∗a. The final expression for the perturbative
matching factor is then:

Zm(µa,m0a) = 1+ Z(2)
m (µa)αV (q∗(µa))+ Z(4)

m (µa)α2
V +O((m0a)4,(m0a)2α2,α3), (2.17)
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whereZ(2)
m (µa) = 0.1188(1)− 2/π log(µa)+ O(m0a)2 was derived previously, [1], and the new

information presented here is the expression forZ(4)
m

Z(4)
m (µa) = Z2 log2(µa)+ Z1 log(µa)+ Z0, (2.18)

where the latter coefficients depend on logarithms ofq∗a

Z2 = 0.76−0.034n f (2.19)

Z1 = −0.40−0.028n f +(−1.12+0.0675n f ) lnq∗a (2.20)

Z0 = 2.09−0.014n f +(0.21−0.013n f ) lnq∗a. (2.21)

We have computed the optimal choice forq∗a in the BLM scheme, as a function ofµa, using an
exact evaluation of the average momentum scales in the continuum self-energy diagrams, according
to [39] (this is an improvement over the inexact calculationin [1]), and a numerical evaluation of
the average scales in the lattice self-energy (unchanged).A typical value for the matching scale is
q∗a = 1.88 atµa = 1.

3. Results

The bare lattice masses for the strange and up/down quarks, on the MILC “coarse” and “fine”
lattices, are given in [1]. For the strange quark, these aream0s = 0.0390(1)(20)/u0c , andam0s =

0.0272(1)(12)/u0 f , on the coarse and fine lattices respectively, whereu0c = 0.85488 andu0 f =

0.86774 are tadpole normalisation factors. The uncertainties are lattice statistical and systematic
errors, respectively, the latter due mainly to chiral extrapolation/interpolation. The lattice spacings
can be found in [5],a−1

coarse= 1.596(30) GeV, anda−1
fine = 2.258(32) GeV.

Following conventional practice, we quote the light quarkMS masses at the scaleµ = 2 GeV,
taking three active flavors of quarks (n f = 3). This results in two-loop coefficients in (2.17)

of Z(4)
m |coarse= 1.939(4), andZ(4)

m |fine = 2.270(4). Finally, we require the couplings at the rel-

evant scales, and for this purpose we use the recently determined valueα(n f =3)
V (7.5 GeV) =

0.2082(40) [5]. We findαV (q∗coarse) = 0.2925(92) andαV (q∗fine) = 0.2713(76).
Putting all of this together, we obtain the following preliminary values for theMS strange-

quark mass, using the coarse and fine lattices as input

mMS
s (2 GeV) = 83(5) MeV [coarse], mMS

s (2 GeV) = 85(4) MeV [fine], (3.1)

where the errors here are just from the simulation systematics.
Following [1], we consider continuum extrapolations of thecentral values in (3.1) based on

the form of the expected leading discretisation errors, which are ofO(αV a2), and compare with a
extrapolation inα2

V a2. These two forms yield almost identical extrapolations, toa central value of
87 MeV, with an error that is folded into the quoted lattice systematic errors above. We are currently
considering refinements to our estimates of the continuum extrapolation and the incorporation of
third order perturbative errors. For this preliminary result we quote as our continuum extrapolation

mMS
s (2 GeV) = 87(0)(4)(4)(0) MeV (3.2)
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where, following [1], the respective errors are statistical, lattice systematic, perturbative, and elec-
tromagnetic. We have assigned a relative error from the estimated third-order perturbative matching
of roughly±2α3

V (q∗)≈ 5%, down from the 10% perturbation theory error in the one-loop determi-
nation in [1]. We anticipate to reduce somewhat the perturbation theory error with a more careful
study of the systematics of theµ dependence.

Our result for the ratio of strange to up/down quark masses isunchanged at 27.4(1)(4)(0)(1)
from [1], since the renormalisation factor is mass-independent, as we have verified above explicitly
through two-loops. Using the valuemu/md = 0.43(0)(8)(1)(0) from [28] this gives:

mMS
u (2 GeV) = 1.9(0)(1)(1)(2) MeV

mMS
d (2 GeV) = 4.4(0)(2)(2)(2) MeV

4. Discussion and Conclusions

Perturbation theory has once again shown itself to be an essential tool in high precision phe-
nomenological calculations from the lattice. The two-looplattice diagrams were conquered with
a combination of algebraic and numerical techniques in thisfirst-ever determination of the multi-
plicative two-loop pole mass on the lattice. When combined with the known continuum matching
from the pole mass to theMS mass, a very accurate determination of the light quark masses was
possible. The results presented here have a number of distinguishing features: two-loop perturba-
tion theory,n f = 2+ 1 simulations with two degenerate light quarks and a heavierstrange quark,
very small light quark masses fromms/8 toms/2 which enabled a partially quenched chiral fit with
many terms to thousands of configurations, and extremely accurate determinations of the lattice
spacings, which are equal within the errors when set from anyof 10 different quantities, ranging
from the very lightest states all the way up to heavy mesons and baryons [4, 30].

Most notable amongst our results is our new value for strangequark massmMS
s (2 GeV) =

87(0)(4)(4)(0) MeV, where the respective errors are lattice statistical, lattice systematic (mostly
due to the chiral extrapolation/interpolation), perturbative, and due to electromagnetic effects. The
two-loop matching has increased the central value with respect to the previous determination in [1]
by about two standard deviations, based on the previous estimate of the perturbation theory un-
certainty (which was±7 MeV). We believe the present estimate of the perturbative uncertainty of
±4 MeV can be reduced somewhat by estimating the third-order perturbative correction, along the
lines that we have already explored, in a preliminary way, here.

The strange quark mass determination has historically generated some controversy, with some-
what different values being obtained from different approaches. An obvious advantage of our result
is that it has been obtained with the correct description of the sea, that is, withn f = 2+ 1 flavors
of dynamical quarks. There is only one other result with the correct number of flavors in the sea,
which is due to the CP-PACS and JLQCD collaborations, who reported a value at this conference
of mMS

s (2 GeV) = 87(6) MeV [40], although the error was not very well quantified, anddoes not
appear to include an estimate of corrections due to two-loopand higher-orders in the perturbative
matching.

It appears the the strange-quark mass extracted from simulations with onlyn f = 2 flavors of
sea quarks are systematically higher than the estimates with the correctn f (noting that the two-
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flavor determinations were also done with nonperturbative definitions of the quark mass), although
the other systematic errors are too large to allow for a definitive assessment. The two-flavor de-
termination from the QCDSF-UKQCD collaboration, ismMS

s (2 GeV) = 100−130 MeV [41], the
ALPHA collaboration value is 97(22) MeV [42], and the Rome value is 101(8)(+25

−9 ) MeV [43].
The next major evolution in our lattice determination of thelight quark masses will come

from using a third lattice spacing, the “super-fine” configurations already partially implemented by
MILC, and planned by UKQCD. This will hopefully reduce the size of the chiral and systematic
errors due to taste-breaking, and vastly improve the quality of the continuum extrapolation. The
HPQCD collaboration plans to continue its accurate determinations of the fundamental constants
by generalising this calculation in the first instance to heavy quark masses to complete the strong
sector of the Standard Model Lagrangian with two-loop calculations of all the quark masses with
the already finished three-loop strong coupling constant. Further generalisation by insertion of
appropriate operators will give the two-loop vector and axial-vector renormalisations, necessary for
improving the accuracy of the decay constantsfB, fD etc and associated form-factors. Eventually
HPQCD plans therefore to have two-loop accurate determinations of many of the CKM matrix
elements in the next few years.
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A. Perturbative Structure

We present some details of the lattice size of the pole mass renormalisation factor, (2.10). We
define the full lattice quark propagator to be:

G(p,m0)
−1 = ip̂/+ m0+ Σtot(p), (A.1)

whereΣtot is minus the usual 1PI truncated two-point function. The lattice dispersion relation im-
plied by p̂ will be kept as a general function of the lattice momentump; for unimproved staggered
quarks, for instance, ˆpµ = sin(pµ). Make the spinor decomposition:

Σtot(p) = Σ1(p)+ (ip̂/+ m0)Σ2(p), (A.2)

where bothΣ1 and Σ2 are implicitly functions ofm0, and both are Dirac scalars. Note thatΣ2

is only part of the wavefunction renormalisation. The pole mass is defined by the all-orders on-
shell condition, corresponding to the location of the pole in the propagator. At tree-level this is
“−ip̂/ = m0” (a very common but abusive notation). As is conventional, we work at zero external
three momentum,p = (pt ,~0), and use the positive energy spinor projector (Euclidean),(1+ γt)/4.
Then it is convenient to rearrange (A.1) and (A.2) to get

P(pt) ≡−ip̂t = m0 +
Σ1(p)

1+ Σ2(p)
(A.3)
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This relation can also be applied to theories with an additive mass renormalisation, such as Wilson
quarks, by absorbing the momentum dependence of the additive mass intoP(pt).

We recursively solve (A.3) for the on-shell pole massM, defined by the renormalised energy
at zero three-momentum

pt = iM, whereM = M(0) + g2
0M(2) + g4

0M(4), (A.4)

is the perturbative expansion, with a corresponding seriesfor other quantities (including e.g.p(0)
t =

iM(0) andP(iM(0)) = m0).
We first consider the expansion of (A.3) through one-loop, which reads

P(iM(0) + ig2
0M(2)) = m0 + g2

0Σ(2)
1 (p(0)). (A.5)

Hence

M(2) = Z(0)
Ψ Σ(2)

1 (p(0)), whereZ(0)
Ψ

−1
=

dP(ix)
dx

∣∣∣∣
x=M(0)

, (A.6)

is the tree-level wave function residue (e.g.Z(0)
Ψ = 1/cosh(M(0)) for unimproved staggered quarks).

To find the location of the pole at two-loops requires solving(A.1) self-consistently

P(iM(0) + ig2
0M(2) + ig4

0M(4)) = m0+ g2
0m(2) + g4

0m(4),

where the right-hand side above represents a self-consistent expansion of the right-hand side of (A.3).
Part of theO(g4

0) term arises from the one-loop piece ofΣ1 when it is evaluated at the one-loop-
corrected on-shell energypt , determined by (A.4) and (A.6). By Taylor expansion:

Σ(2)
1 (pt) = Σ(2)

1 (iM(0))+ ig2
0M(2) ∂Σ(2)

1 (pt)

∂ pt

∣∣∣∣∣
pt=iM(0)

+O(g4
0). (A.7)

The result for the two-loop contribution to the pole mass is therefore

M(4) = Z(0)
ψ

(
m(4)−

1
2
(M(2))2 d2P(ix)

dx2

∣∣∣∣
x=M(0)

)
(A.8)

(the second-term above is a correction ofO((am0)
4) for Asqtad), and

m(4) = Σ(4)
1 (iM(0))+ Σ(2)

1 (iM(0))Z(0)
ψ




Tr

[
1+ γt

4
∂Σ(2)

tot (pt)

∂ pt

]

pt=iM(0)




 , (A.9)

where the identity

Z(0)
ψ Tr

[
1+ γt

4
∂Σ(2)

tot (pt)

∂ pt

]

pt=iM(0)

= −Σ(2)
2 (iM(0))+ i

∂Σ(2)
1 (pt)

∂ pt

∣∣∣∣∣
pt=iM(0)

(A.10)

was used. In the continuum,Z(0)
ψ = 1 and (A.10) is the complete one-loop expression for the wave

function renormalisation there. On the lattice, which has atree level wavefunction renormalisation
the result has some additional terms:

Z−1
Ψ = Z(0)

Ψ
−1

+ g2
0

{
iTr

[
1+ γt

4
∂Σ(2)

tot (p)

∂ pt

]

p=p(0)

+ M(2) d2P(ix)
dx2

∣∣∣∣
p=p(0)

}
.
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+ iZ(0)
Ψ

{ }
∂

∂ pt

{ }
= IR finite,

where ≡ , and

Figure 2: Schematic representation of an IR subtraction, where appropriate traces of the self-energy with an
energy-projector are implicit in this schematic representation.

Unfortunately (A.10) is IR divergent for both lattice and continuum. This infrared divergence
precisely cancels against an IR divergence in the two-loop nested-rainbow diagrams (D21, D22
and CT4 in figure 1). This parallels the cancellation of an infrared divergence in the continuum

two-loop diagram, D21, , which is likewise rendered finite by the iteration of
the the one-loop self-energy, which generates a “counterterm” given by the one-loop mass shift
times the one-loop wave function residue, analogous to the terms in (A.9).

In this connection, we note that the continuum pole mass was shown to be infrared finite at
two-loops by Tarrach [31]; an all-orders proof of the finiteness of the on-shell self-energy has only
recently been established, by Kronfeld [36].

On the lattice, the infrared cancellation in (A.9) has a schematic representation in diagram-
matic form, as shown in figure 2. We numerically evaluate the integral for the two-loop diagram
on the left in figure 2 with a subtraction, in its integrand, ofthe product of the independent inte-
grands for the one-loop self-energy, and its derivative. This grouping, as indicated in figure 2, is
IR finite, and does not require any infrared regulator. We obtain a powerful check of this result
by noting that this combination generates a leading logarithmic contribution to the anomalous di-
mension of the mass which goes like log2(a2m2

0), and whose coefficient is identical to that of the
infrared-subtracted combination in the continuum, which can be found in Feynman gauge from the
MS results in [31].

All the diagrams for the two-loop self-energy, figure 1, weregenerated and evaluated inde-
pendently by two of us. The Feynman rules for the highly-improved actions are exceedingly com-
plicated, and were generated automatically using computeralgebra-based codes [14]. Moreover,
one of us has produced an algorithm which automatically generates the Feynman diagrams them-
selves [37]. The two-loop integrals were evaluated numerically, using the adaptive Monte-Carlo
sampling of method ofVEGAS [38]. Practically, when performing the subtractions of figure 2 the
integrals are much more convergent with a (4D) spherical transform and a furtherknew = log|k|
transformation. The effect of the associated Jacobian’s isto regulate the IR withk4 and a spherical
cut-off at small|k|. We found thate−10 and smaller were sufficient to show the integrals inde-
pendent of this cut-off. Almost all diagrams benefited from using the spherical transform, though
some of the other “continuum” like diagrams are better behaved with the “log-spherical” transform
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 0.001  0.01  0.1

fit to A20
QM total
HT total

A
20
| n

f=
0

in
α

2 L

Asqtad multiplicative mass renormalisation at two-loops

Quark Mass(m0a)

Figure 3: The total of the gluonic part of the two-loop contribution tothe pole mass on the lattice with
the Asqtad action, evaluated independently by two of the authors, in units ofα2

L , for varying quark mass
(m0a). The data is shownafter subtracting the known logarithms:A22 log2 m0a + A21logm0a, and should
therefore be the constant,A20, with no mass dependence. The absence of observed lattice artifacts of the
form (m0a)n logl m0a, l ≤ 2 justifies our assumption in the derivation that for small masses the lattice is a
mass-independent renormalisation scheme.

for very large numbers of integrand evaluations. We have checked that varying the cut-off makes
no difference to the result. A powerful additional cross-check was provided by an explicit verifi-
cation that our results are gauge independent, which we established numerically for two different
bare-quark masses in three covariant gauges: Feynman, Landau and Yennie.

We show results for the two-loop part of the pole mass, (2.10), coming from diagrams without
fermion loops, in figure 3. As described in Sect. 2, we can testour calculation by subtracting the
known logarithms inm0a, in order to expose the remaining factorA20, which must be finite in the
limit m0a → 0. Figure 3 shows results for the gluonic part ofA20 over a wide range of bare masses,
which clearly shows the expected limiting behaviour.

A further stringent check of our evaluation of the diagrams with internal fermion loops (dia-
grams 12, 13, 19 and 20 in figure 1) is achieved by computing over a range of sea quark masses. As
described in Sect. 3, the mass dependence in the intermediate renormalisation from the bare mass
to the pole massM should cancel against the renormalisation fromM to theMS mass. We define

A20(rsea) ≡ A20(0)+
4

3π2 ∆lattice(rsea), rsea=
msea

mvalence
, (A.11)

and compare with the analogous continuum function∆(rsea). We plot our results in figure 4, over a
very wide range inrsea, which shows the expected cancellation.
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Figure 4: Comparison of the sea loop-quark mass dependence of pole mass renormalisation matching fac-
tors, on the lattice-side of the matching, and on the continuum side. The difference between the contin-
uum squares and lattice crosses (calculated atamvalence= 0.001), is smaller than the errors. The variable
r = msea/mvalence. The solid lines show limiting forms of the dilogarithmic but analytic continuum function.
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