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1. Introduction

The strong sector of the Standard Model Lagrangian continember of inputs that are
a priori unknown and must be determined from experiment. For thesgafuental constants;
the quark masses and the strong coupling constant, our kdgelis currently rather imprecise.
Their determination is complicated by confinement in QCDtlsquarks and gluons cannot be
observed as isolated particles. We can only determine flueskamental parameters by solving
QCD for observable quantities such as hadron masses, afisof the quark masses and the
coupling (or alternatively, the lattice spacing). The HRtecision QCD (HPQCD) collaboration
has a program for calculating the values of these paramaséng the numerical techniques of
lattice QCD simulations combined with multi-loop pertuiifsa renormalisation. Previously the
masses have been determined at the one-loop level [1, Z1@tha strong coupling constant was
determined from one observable in a two-loop calculatidn Recently the determination of the
strong coupling was improved with three-loop perturbathetching and with input from 28 lattice
observables in simulations at three different lattice smg; resulting in an accuracy of just over
1% [5, 6]. This writeup covers progress on the determinadiotine light quark masses, where we
push the perturbative matching calculation to two loopat i, next-to-next-to-leading order.

Precise knowledge of quark masses constrains Beyond thd&thModel scenarios as well
as providing input for phenomenological calculations diréiard Model physics. The strange
guark mass, in particular, is needed for various phenorogiual studies, including the important
CP-violating quantitye’ /¢ [7], where its uncertainty severely limits the theoretipegdcision.

Previously, shortcomings in the formulation of QCD on thitida and limitations in comput-
ing power have meant that lattice calculations were foroeddrk with an unrealistic QCD vac-
uum that either ignored dynamical (sea) quarks or includdg wandd quarks with masses much
heavier than in nature. This condemned determinations aft ipllenomenologically-important
guantities, including the quark masses, to rather largeesatic errors (10-20%) arising from the
inconsistency of comparing such unrealistic theories Withnecessary experimental input. The
determination presented here uses simulations with theowed staggered quark formalism that
generates a much more realistic QCD vacuum with two lightadyieal quarks and one strange
dynamical quark. Staggered quarks are fast to simulatey Réep a remnant of chiral symmetry
on the lattice, which prevents the occurrence of exceptioofigurations, and which allows sim-
ulations at much smaller quark masses. The bare quark magbessimulations were fixed using
chiral perturbation theory to reliably extrapolate lattiesults to the physical point [1]. Working
in the region of dynamical/d quark masses beloms/2 and down tans/8 gives control of chiral
extrapolations and avoids the large systematic errors éhpmamical quark mass and unquenching
effects that afflicted previous studies using other lattiiseretisations.

The dominant systematic error in the determination ofM& masses in [1] came from un-
known second- and higher-orders in the perturbative magctome progress was reported on the
chiral fits at the lattice meeting [8], however that analysisot used here; we continue to employ
the bare quark masses given in [1]. Significant progress emetiuction of the systematic errors
is reported here, due to our computation of the second-@elturbative matching coefficient, the
first determination at this order of a “kinetic” quark massiy lattice theory (the zero-point ad-
ditive renormalisation for Wilson fermions was previoudistermined at two-loops in [9], and for
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static quarks in [10]).

The staggered quark formalism does present several chaiemwhich have been tamed with
an aggressive program of perturbative improvement. Withrthive staggered action large dis-
cretisation errors appear, although they are formally @nig?) or higher @ is the lattice spacing).
In the case of the unimproved staggered action the ren@atiain of lattice operators to match
to continuum quantities were also frequently large and lgoawnvergent in perturbation theory.
This was true, for example, for the mass renormalisatiohish@eeded here. It turns out that both
problems have the same source, a particular form of diset&in error in the action, called “taste
violation,” and both are ameliorated by use of the improviedjgered formalism [11]. The per-
turbation theory then shows small renormalisations [12,143 15] and discretisation errors are
much reduced [16, 17, 18]. Empirically, taste violation eéns the most important discretisation
error in the improved theory, despite being subleading emégic” discretisation errors. The Gold-
stone meson masses we will discuss here are affected byt thiedoop in the chiral expansion.
Staggered chiral perturbation theonX(ST) [19, 20, 21, 22] allows us to control these effects and
reduce discretisation errors significantly.

A potentially more fundamental concern about staggerediters relates to the need to take
the fourth root of the quark determinant, in order to conweet four-fold duplication of “tastes”
into one quark flavor. One might imagine that the fourth redtaduces nonlocalities which pre-
vent decoupling of the ultraviolet modes of the theory in¢batinuum limit. However, evidence
is amassing that demonstrates that the properties of tggested theory, with the fourth root,
are equivalent to a one-flavor theory, up to the expectedeatisation errors. These are due to
short-distance taste-changing interactions, which ardiated by high-momentum gluons [11]
(the locality of the free-field staggered theory is triviahd is made manifest in the “naive” basis
used in [11]). One should not be surprised that nonlocalitie not arise, precisely because the
staggered quark matrix is diagonal in the taste basis, upasetsmall, short-distance (and cal-
culable) corrections. It has been demonstrated that petive improvement of staggered actions
correlates exceedingly well with non-perturbatively mead properties of the staggered fermion
matrix, providing clear support for the correctness of tharth-root procedure. This includes the
measured pattern of low-lying eigenvalues of the staggeratlix [23, 24, 25], and the measured
pattern of taste-violating mass differences in the nomatigions [26].

The rest of this paper is organised as follows. The methggodd the calculation is discussed
in the following section, including a general discussiofaiv to obtain the matching factor which
connects the bare quark mass(a) to theMS massS(p1), using the pole mass as an intermediate
guantity. We also derive the two-loop anomalous dimensioriHfe bare quark mass in the lattice-
regularised theory, and give complete results for the wapImatching coefficients. Section 3
gives preliminary results for the light quark masses, wigireiminary analysis of the systematic
uncertainties, including a technique to make a rough estirofthe third-order perturbative cor-
rection. Section 4 compares our results with other recdetiakénations of the strange-quark mass.
An appendix provides some additional information conaagrihe evaluation of the multi-loop
diagrams, including explicit expressions for the two-lapark mass renormalisation in terms of
the 1PI self-energy, a discussion of the techniques useddioerating and evaluating the neces-
sary multi-loop integrands, and some detailed numericallte which provide an indication of the
many consistency checks that we have applied to our results.
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2. Structure of Calculation

The quark masses are not physically measurable, and asm&uchlp well-defined in certain
renormalisation schemes, such asM_iémassnM_S(u), evaluated at some convenient sqaleThe
light quarkMS masses are determined here by multiplying the chiraityapolated bare masses
in lattice units,amy, by the inverse lattice spacirsg and by the appropriate perturbative matching
factorZ,(ua, mpa), which we compute to two-loop order:

'S = ™ 7, (42 ma), (2.1)
where the bare massy(a) is cutoff dependent. The bare masses used here were degdrinin
an extensive chiral perturbation theory analysis of the ®Asqtad data that was discussed in [1,
27, 28, 29]. These bare masses were previously used witméroop perturbation theory result
for Zm, to extract theMS masses in [1]; the final result for the strange quark massrted there
was 76(0)(3)(7)(0) MeV where the respective errors are frematistics; simulations systematics
of which the most important are chiral fitting and lattice dpg; an estimate of the unknown
two-loop perturbative errors and an estimate of the uniceéytaue to electromagnetic and isospin
contributions to the pion and kaon. That the error comingnftbe lattice spacing is so small
is a distinguishing feature of this calculation. The latgpacinga is one of the five simulation
parameters, and an important one because it sets the donidahass scale. In our earlier light
guark masses ara analyses, we set the lattice spacing by comparing a sinalifateass splitting
(e.g., Y —Y) with experiment. Here we continue this practice, althothghlattice spacings derived
from our Y splitting have been shown to agree with spacings derived ftavide variety of other
physical quantities: ten in all, including the pion and kdeptonic decay constants, tlBg mass,
and theQ baryon mass|[4, 30]. All of these different quantities agoeethe lattice spacing to
within 1.5-3%.

The largest error in our previous determination of the qumdsses [1] was from the pertur-
bative matching. Here that is addressed by the calculafiah,@t two loops. We do this in two
stages, using the pole madsas a matching quantity to connect the lattice- Mf8-regularisation
schemes. We also use our previous determination of theorelagtween the lattice bare coupling
and the renormalised couplirm, (q*), defined by the static potential, to reorganise both sides of
the matching equation into series in termQf g*) at an appropriately determined scale.

We begin by recalling the relation between M8 mass and the pole malsl which is known
through three loops [31, 32, 33, 34, 35]. We require it to sdcorder, a result that was first
obtained in [32] (expressions for the relation at arbitrargre conveniently given in [34])

1+21(E)M+22<£)M+...] , (2.2)

MS
M) =M M T M 4

where the one- and two-loop coefficient functiongu /M) and zx(u/M) are reduced to a set
of terms with different colour structures [in the followir@ = (N2 —1)/(2N;), Ca = N, and
T=1/2]

721 =Crzr (2.3)
) = C2Zef +CrCaZrp +Cr Tize +Cr T Zrh, (2.4)
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and where the contributior-y from an internal quark loop with the same flavor as the valence
quark is split off from the contributiom of n, internal quark loops with different flavor (these are
taken here to be degenerate in mass, though this is easiyalised). The total number of flavors
isns = ny+ 1. The individual functions are given by

ze = —1- 3w, (2.5)
Zer = 155 — 202 — 303+ 3021092+ Zlym + Liw, (2.6)
Zen=—2+ 10+ 30— 301092 B0, — Li2y, (2.7)
ZrL = Go+ 30— 2(rsed + 33lum + 5L, (2.8)
Zrn = 4+ 10— 20(1) + Leum + 02, (2.9)

where/,m = log(p?/M?), and where the functiof(r) gives the dependence of the renormalisation
factorsz-| andz-y on the quark mass in an internal fermion loop (sea and valeaspectively),
With rsea= Mseg/ Mvatence AN €xact integral expression fa(r) can be found in [32] and it is plotted
in the appendix.

Next we outline the computation of the relation between thie pnasM and the bare quark
massmy(a) in the lattice-regularised theory, which has the form

M = mp [1+ o (Aralogmoa+ Agg) + af (Azzlog? moa+ Agrlogmoa+Agg) +...] . (2.10)

The coefficients of the logarithms are determined by theltwop-anomalous dimension mp(a),
which in turn can be determined from the known anomalous dgio@ of theMS mass, as de-
scribed below. We have previously computed the one-loogmirag factor, with the result [1, 12]
Ao~ 0.5432 (neglecting corrections 6f( (amy)?)). What is new in this paper is the determination
of the two-loop termAy.

As with the two-loop continuum matching factor in (2.2 depends on the number of quark
flavors in the sea, and on the ratios of the sea quark masgg® the valence quark mas®aence
However, as we demonstrate explicitly in the appendix, tlassrdependence Ayg cancels pre-
cisely in the matching to the continuum relation (2.2) fyeg/Myvaience iN the range necessary.
This follows from the fact that, in the limit where the energgales are large, the net renormal-
isation factor connectingyp(a) to m'\TS(M) probes internal loops at scales large compared to the
internal quark masses; hence the dependence on quark nodigbesintermediate renormalisa-
tion factors connecting to the pole madsare infrared effects that are identical in the lattice- and
MS-regularised theories.

Before we give our results f&kyg, and the final matching fact@, in (2.1), we consider how
to determine the coefficients of the logarithmic terms iiQ2. The pole mass is an RD invariant
(equivalently does not depend aip so taking logs and differentiating with respect to dp@nd
neglecting any scale dependence in the coefficiégtwhich would arise as discretisation errors
that go as powers afpa < 0.05, which are negligible for our purposes), one has

o~ s anoga( || 31T}
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where the square bracket is from (2.10), and the first termaeaban be identified with the anoma-
lous dimension equation:

dl
= Yoa(a)-+ f of(@) + () 212)

The L’s indicate the lattice-regularisation scheme. The sigme® from differentiating with re-
spect to the logarithm of the lattice scale! (momentum units), instead @f. Only the leading
term in the anomalous dimension is scheme indepenggent,3Ce /(2m). Comparison of the two
preceding equations leads to the identification

1
A1 = —Y, Ao = AL — A11&7 Po1 = —yr + A% — Ao (E - All) ) (2.13)

2 am 2n
where theB-function arises from an implicit derivative of the barditz coupling in (2.11) 8 =
11— 2ny). It remains to determingt. This can be found from the knowMS anomalous dimen-
sion,

dlogmygs

s o= 101 10
dlogl,l - yoa'\/TS(u) + VJMSG%(M) + ﬁ(ag,)’ VJ-MS

“ 1@ 3eE " (2.14)

making the substitutiop = a1, and using the relationsys(a 1) = mg(1+Cna), andays(a ) =
o, (1+Cy0y). By comparison to (2.12) we obtain

= WS+ Cato— Gl (2.15)
The one-loop renormalisation consta@ts= Z,(nz)(u =1/a) =0.1188 andC, = 4.753— 0.33161¢
for the improved gluon and staggered quark actions have fresiously calculated [1, 12, 5, 6].

Knowing the logarithmic terms due to the lattice anomaldosethsion provides a useful cross-
check on our evaluation of the two-loop renormalisatiortda¢2.10). We compute the two-loop
lattice diagrams as a function oka, and subtract the known logarithms, in order to isolate the
remaining ternyo, which must be finite asya — 0. Additional checks are provided for diagrams
which have a leading IGgamy) term, which arises from the infrared limit of both the outeda
inner loop integrals, and which is therefore an infraredjityg the coefficients of the double loga-
rithms in the individual diagrams are available in Feynmangg from the originallS calculation
of Tarrach [31], and we have verified that these are repratlurceur lattice calculation.

The necessary two-loop diagrams are shown in figure 1. Rudttails on our evaluation of
these diagram are given in the appendix. We can easily eealo@m for various gluon and quark
actions, using our automated methods for generating thieddteynman rules. In this paper we
give results for the Symanzik improved gluon with improvéafgered quarks (Asqgtad) and SU(3).
Our result for the matching terdyg is, in the limit of vanishing sea quark mass,

Ago = 6.09— 0.15n, — 0.03, (2.16)

where the last term corresponds to an internal quark loofagtng one (massive) valence quark
flavor. The uncertainties arise from a numerical evaluadioiie two-loop integrals.
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Figure 1: The two-loop diagrams that contribute to the two-loop mas®rmalisation. The numbering is
consistent with [9]. Blue lines are valence quarks (onistrdkernally), green are gluons and red are sea
quarks. The large brown vertices are stand-ins for the fiveloap gluon propagator diagrams (gluon and
ghost bubbles and tadpoles and the measure term). We evallidive simultaneously with an internal
subtraction. The crosses represent interaction vertieasrated by perturbative expansion of tadpole and
other renormalisation factors in the gluon and quark astion

When the lattice renormalisation factor (2.10) connectimg bare mass to the pole mass is
combined with the equivalent continuum expression (2.2}He connection to th#1S mass, the
logs ofmy drop out, as expected, since these are infrared effectargatentical in the intermediate
lattice and continuum matchings. We also reorganise thplicms to theoy scheme at some scale
g*, whereqg*a is a function ofua that is determined according to the BLM scheme [39]. This
leaves an expression with logarithms onlyua andg*a. The final expression for the perturbative
matching factor is then:

Zin(pa,moa) = 1+ Z (Ha)ay (0 (pa)) + 2 (Ha)ad + 0((mea)*, (moa)?a?,a®),  (2.17)
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whereZ,(na(ua) =0.11881) — 2/mlog(ua) + ¢(mya)? was derived previously, [1], and the new
information presented here is the expressio

ZY (ua) = Zlog?(pa) + Z1log(pa) + Zo, (2.18)

where the latter coefficients depend on logarithmg*af

Z» = 0.76— 0.034n; (2.19)
Z; = —0.40—0.02&¢ + (—1.1240.0675¢ ) Ing*a (2.20)
Zo=2.09-0.014n¢ +(0.21-0.01x¢)Ing"a (2.21)

We have computed the optimal choice fa in the BLM scheme, as a function pfa, using an
exact evaluation of the average momentum scales in thencomti self-energy diagrams, according
to [39] (this is an improvement over the inexact calculaiiofil]), and a numerical evaluation of
the average scales in the lattice self-energy (unchangetypical value for the matching scale is
g‘a= 188 atua=1.

3. Resaults

The bare lattice masses for the strange and up/down quarkkedMILC “coarse” and “fine”
lattices, are given in [1]. For the strange quark, theseaayg = 0.039Q1)(20)/ugc, andamps =
0.02721)(12)/uos, on the coarse and fine lattices respectively, whgge= 0.85488 andups =
0.86774 are tadpole normalisation factors. The uncertairatre lattice statistical and systematic
errors, respectively, the latter due mainly to chiral gxdtation/interpolation. The lattice spacings
can be found in [5]acse= 1.596(30) GeV, anday &, = 2.258(32) GeV.

Following conventional practice, we quote the light quBI® masses at the scale= 2 GeV,
taking three active flavors of quarkes(= 3). This results in two-loop coefficients in (2.17)
of Z,(ﬁl)\coarse: 1.9394), and Z,(#)\ﬁne = 2.2704). Finally, we require the couplings at the rel-
evant scales, and for this purpose we use the recently dem:lnwaluea\(,anS)(ZS GeV) =
0.2082140) [5]. We find av (0oarse = 0.292592) anday (0f,e) = 0.271376).

Putting all of this together, we obtain the following preiirary values for theMS strange-
guark mass, using the coarse and fine lattices as input

mS(2 GeV) = 83(5) MeV [coarse] mY'S(2 GeV) = 85(4) MeV [fine], (3.1)

where the errors here are just from the simulation systesati

Following [1], we consider continuum extrapolations of tentral values in (3.1) based on
the form of the expected leading discretisation errorsctviaire ofO(aya?), and compare with a
extrapolation inaZa?. These two forms yield almost identical extrapolationsa tentral value of
87 MeV, with an error that is folded into the quoted latticstsynatic errors above. We are currently
considering refinements to our estimates of the continuumagaslation and the incorporation of
third order perturbative errors. For this preliminary feste quote as our continuum extrapolation

m¥S(2 GeV) = 87(0)(4)(4)(0) MeV (3.2)
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where, following [1], the respective errors are statidfittice systematic, perturbative, and elec-
tromagnetic. We have assigned a relative error from theastid third-order perturbative matching
of roughlina@’(q*) ~ 5%, down from the 10% perturbation theory error in the ormgsldetermi-
nation in [1]. We anticipate to reduce somewhat the pertiohaheory error with a more careful
study of the systematics of thedependence.

Our result for the ratio of strange to up/down quark massesdéhanged at 27.4(1)(4)(0)(1)
from [1], since the renormalisation factor is mass-indelee, as we have verified above explicitly
through two-loops. Using the valum,/my = 0.43(0)(8)(1)(0) from [28] this gives:

m’S(2 GeV) = 1.9(0)(1)(1)(2) MeV

my'S(2 GeV) = 4.4(0)(2)(2)(2) MeV

4. Discussion and Conclusions

Perturbation theory has once again shown itself to be am#ésiseol in high precision phe-
nomenological calculations from the lattice. The two-Idaftice diagrams were conquered with
a combination of algebraic and numerical techniques inftrésever determination of the multi-
plicative two-loop pole mass on the lattice. When combindét the known continuum matching
from the pole mass to th&lS mass, a very accurate determination of the light quarksesawas
possible. The results presented here have a number ofglistining features: two-loop perturba-
tion theory,n; = 2+ 1 simulations with two degenerate light quarks and a heatiange quark,
very small light quark masses from/8 toms/2 which enabled a partially quenched chiral fit with
many terms to thousands of configurations, and extremelyrate determinations of the lattice
spacings, which are equal within the errors when set fromcdiriy0 different quantities, ranging
from the very lightest states all the way up to heavy mesodsanyons [4, 30].

Most notable amongst our results is our new value for strangek massiS(2 GeV) =
87(0)(4)(4)(0) MeV, where the respective errors are lattice statistiedtice systematic (mostly
due to the chiral extrapolation/interpolation), pertuie and due to electromagnetic effects. The
two-loop matching has increased the central value witheetgp the previous determination in [1]
by about two standard deviations, based on the previous@&stiof the perturbation theory un-
certainty (which wast7 MeV). We believe the present estimate of the perturbatineeriainty of
+4 MeV can be reduced somewhat by estimating the third-oregugbative correction, along the
lines that we have already explored, in a preliminary waye he

The strange quark mass determination has historicallyrgetksome controversy, with some-
what different values being obtained from different apphas. An obvious advantage of our result
is that it has been obtained with the correct descriptiorhefdea, that is, withs = 2+ 1 flavors
of dynamical quarks. There is only one other result with theect number of flavors in the sea,
which is due to the CP-PACS and JLQCD collaborations, whonted a value at this conference
of mMS(2 GeV) = 87(6) MeV [40], although the error was not very well quantified, atugs not
appear to include an estimate of corrections due to two-&@phigher-orders in the perturbative
matching.

It appears the the strange-quark mass extracted from giongawith onlyn; = 2 flavors of
sea quarks are systematically higher than the estimatéstimgtcorrecin; (noting that the two-
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flavor determinations were also done with nonperturbatefendions of the quark mass), although
the other systematic errors are too large to allow for a definassessment. The two-flavor de-
termination from the QCDSF-UKQCD coIIaboration,rié"_S(Z GeV) = 100— 130 MeV [41], the
ALPHA collaboration value is 922) MeV [42], and the Rome value is 1(8)(1%5) MeV [43].

The next major evolution in our lattice determination of tight quark masses will come
from using a third lattice spacing, the “super-fine” confaions already partially implemented by
MILC, and planned by UKQCD. This will hopefully reduce theeiof the chiral and systematic
errors due to taste-breaking, and vastly improve the quafithe continuum extrapolation. The
HPQCD collaboration plans to continue its accurate detgatiins of the fundamental constants
by generalising this calculation in the first instance tovigeguark masses to complete the strong
sector of the Standard Model Lagrangian with two-loop dalions of all the quark masses with
the already finished three-loop strong coupling constantrthEr generalisation by insertion of
appropriate operators will give the two-loop vector ancibxector renormalisations, necessary for
improving the accuracy of the decay constafigsfp etc and associated form-factors. Eventually
HPQCD plans therefore to have two-loop accurate deterinmatof many of the CKM matrix
elements in the next few years.
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A. Perturbative Structure

We present some details of the lattice size of the pole massmalisation factor, (2.10). We
define the full lattice quark propagator to be:

G(p,mo) * = ip+mo+ Zt(P), (A.1)

whereZ; is minus the usual 1Pl truncated two-point function. Thadatdispersion relation im-
plied by p will be kept as a general function of the lattice momentoirfor unimproved staggered
quarks, for instancep,”= sin(py). Make the spinor decomposition:

Ziot(P) = Z1(p) + (IP+ Mo) Z2(p), (A.2)

where bothZ; and 2, are implicitly functions ofmg, and both are Dirac scalars. Note that

is only part of the wavefunction renormalisation. The polassis defined by the all-orders on-
shell condition, corresponding to the location of the poldghie propagator. At tree-level this is
“—ip=my” (a very common but abusive notation). As is conventionad, work at zero external
three momentump = (pt,ﬁ), and use the positive energy spinor projector (Euclidedn}, ) /4.
Then it is convenient to rearrange (A.1) and (A.2) to get
21(p)

P(pt) = ~ipt = Mo+

1+32(p) (A-3)
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This relation can also be applied to theories with an adalitiass renormalisation, such as Wilson
quarks, by absorbing the momentum dependence of the alditags intd(p;).

We recursively solve (A.3) for the on-shell pole maésdefined by the renormalised energy
at zero three-momentum

p=iM,  whereM = M@ +gaM@ + gdM @), (A.4)
is the perturbative expansion, with a corresponding sésiesther quantities (including e.gpfo) =

iM© andP(iM(©) = mp).
We first consider the expansion of (A.3) through one-loopictvineads

P(iM© +iggM @) = mo+ =y (). (A.5)
Hence
-1 P(i
M® =752 (p0)  wherezl) "= d d()l(x) : (A.6)
x=M©

is the tree-level wave function residue (eZé?) = 1/cosHM(©) for unimproved staggered quarks).
To find the location of the pole at two-loops requires soliAgl) self-consistently

P(iM© +iggM® +iggM @) = mo + ggm® + ggm™),

where the right-hand side above represents a self-consestpansion of the right-hand side of (A.3).
Part of theO(g3) term arises from the one-loop piecef when it is evaluated at the one-loop-
corrected on-shell energy, determined by (A.4) and (A.6). By Taylor expansion:

(2)

. . 227 (p
2(p) = 22(MO) +iggm® PR g (A7)
P p=iM(©)
The result for the two-loop contribution to the pole masseréfore
1 d?P(ix)
M@ =z <m<4> —Z(M®@)2 ) A.8
laU 2( ) dX2 X:M(O) ( )
(the second-term above is a correctiorQgf amg)?) for Asqgtad), and
(2
m® = 59(MO) + 22 (iM©) Z) {Tr 1: ¥ dzgn p(tm] } , (A.9)
pr=iM©

where the identity

022 ()

op

14+ % 053 (p)

0
zPTr i on

(A.10)

] = —2Z(MO@) +
pt=iM(©) p=iM©

was used. In the continuurﬂ&?) =1 and (A.10) is the complete one-loop expression for the wave
function renormalisation there. On the lattice, which ha®a level wavefunction renormalisation
the result has some additional terms:

14+ % 022 (p)

0) LT N 040t (D)
4 0pt] M e
p:p(o)

1
z,t =2 +g%{iTr
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—@— |Z( ) i + }— IR finite,
Where_._ Q ﬁ and =y¢&—

Figure2: Schematic representation of an IR subtraction, where g@pjatte traces of the self-energy with an
energy-projector are implicit in this schematic repreagah.

Unfortunately (A.10) is IR divergent for both lattice andntiouum. This infrared divergence
precisely cancels against an IR divergence in the two-laegied-rainbow diagrams (D21, D22
and CT4 in figure 1). This parallels the cancellation of amardd divergence in the continuum

two-loop diagram, D21, _@_ , which is likewise rendered finite by the iteration of

the the one-loop self-energy, which generates a “coumbattgiven by the one-loop mass shift
times the one-loop wave function residue, analogous toettmagin (A.9).

In this connection, we note that the continuum pole mass Wawrs to be infrared finite at
two-loops by Tarrach [31]; an all-orders proof of the finiéea of the on-shell self-energy has only
recently been established, by Kronfeld [36].

On the lattice, the infrared cancellation in (A.9) has a stdic representation in diagram-
matic form, as shown in figure 2. We numerically evaluate titegral for the two-loop diagram
on the left in figure 2 with a subtraction, in its integrand tleé product of the independent inte-
grands for the one-loop self-energy, and its derivativeis Ghouping, as indicated in figure 2, is
IR finite, and does not require any infrared regulator. Weaiob& powerful check of this result
by noting that this combination generates a leading Idgaiit contribution to the anomalous di-
mension of the mass which goes like f¢a’mg), and whose coefficient is identical to that of the
infrared-subtracted combination in the continuum, whiah be found in Feynman gauge from the
MS results in [31].

All the diagrams for the two-loop self-energy, figure 1, wgemerated and evaluated inde-
pendently by two of us. The Feynman rules for the highly-iowed actions are exceedingly com-
plicated, and were generated automatically using comp@igebra-based codes [14]. Moreover,
one of us has produced an algorithm which automatically igeee the Feynman diagrams them-
selves [37]. The two-loop integrals were evaluated nuralyicusing the adaptive Monte-Carlo
sampling of method o¥EGAS [38]. Practically, when performing the subtractions of fig2 the
integrals are much more convergent with a (4D) sphericaistaam and a furthekney = log K|
transformation. The effect of the associated Jacobianésisgulate the IR wittk* and a spherical
cut-off at small|k|. We found thate=1° and smaller were sufficient to show the integrals inde-
pendent of this cut-off. Almost all diagrams benefited frosing the spherical transform, though
some of the other “continuum?” like diagrams are better betlavith the “log-spherical” transform
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Asqtad multiplicative mass renormalisation at two-loops

6.5 T T - T
fit to Ayg
QM total ——+—
HT total —x—i
6.4 | -
6.3 F e
G 62F .
£
o
I
<
S
<
59 F b
58 F .
L L L
0.001 0.01 0.1
Quark Masgmpa)

Figure 3: The total of the gluonic part of the two-loop contributionttee pole mass on the lattice with
the Asqtad action, evaluated independently by two of theast in units ofa?, for varying quark mass
(mpa). The data is showafter subtracting the known Iogarithm:!@\;zzlog2 mpa+ Az1logmpa, and should
therefore be the constafipg, with no mass dependence. The absence of observed latiifeetarof the
form (mpa)"log' moa, | < 2 justifies our assumption in the derivation that for smalkses the lattice is a
mass-independent renormalisation scheme.

for very large numbers of integrand evaluations. We haveldgkthat varying the cut-off makes
no difference to the result. A powerful additional croseakhwas provided by an explicit verifi-
cation that our results are gauge independent, which welsstad numerically for two different
bare-quark masses in three covariant gauges: FeynmanalLamdl Yennie.

We show results for the two-loop part of the pole mass, (2d@ning from diagrams without
fermion loops, in figure 3. As described in Sect. 2, we candastalculation by subtracting the
known logarithms immpa, in order to expose the remaining facts, which must be finite in the
limit mpa — 0. Figure 3 shows results for the gluonic partef, over a wide range of bare masses,
which clearly shows the expected limiting behaviour.

A further stringent check of our evaluation of the diagranithwternal fermion loops (dia-
grams 12, 13, 19 and 20 in figure 1) is achieved by computingavenge of sea quark masses. As
described in Sect. 3, the mass dependence in the intermediarmalisation from the bare mass
to the pole masM should cancel against the renormalisation filgntio theMS mass. We define

Msea

, A.11
Myalence ( )

4
Aoo(rsed = Axo(0) + ﬁAlattice(rsea% lsea=

and compare with the analogous continuum funcfionez). We plot our results in figure 4, over a
very wide range imsea Which shows the expected cancellation.
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10
) q
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x: Lattice
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Figure 4: Comparison of the sea loop-quark mass dependence of potersrasmalisation matching fac-
tors, on the lattice-side of the matching, and on the contimgide. The difference between the contin-
uum squares and lattice crosses (calculateaih@iience= 0.001), is smaller than the errors. The variable
I = Mseg/ Myatence The solid lines show limiting forms of the dilogarithmictanalytic continuum function.
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