PROCEEDINGS

OF SCIENCE

The QCD phase diagram
at zero and small baryon density

Owe Philipsen*

Institut fir Theoretische Physik

Westféalische Wilhelms-Universitat Minster
48149 Munster, Germany

E-mail: 0. phi | i psen@ni - nuenst er. de

| review recent developments in determining the QCD phaagrdm by means of lattice simu-
lations. Since the invention of methods to side-step the gigblem a few years ago, a number
of additional variants have been proposed, and progresbders made towards understanding
some of the systematics involved. All available technigagsee on the transition temperature
as a function of density in the regimg/T <1. There are by now four calculations with signals
for a critical point, two of them at similar parameter valaesl with consistent results. However,
it also emerges that the location of the critical point ise®dingly quark mass sensitive. At the
same time sizeable finite volume, cut-off and step size &ffieave been uncovered, demanding
additional investigations with exact algorithms on larged finer lattices before quantitative con-
clusions can be drawn. Depending on the sign of these camacthere is ample room for the
eventual phase diagram to look as expected or also quitreiiff, with no critical point at all.

XXIlIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



The QCD phase diagram at zero and small baryon density Owe Philipsen

QGP Myd =0; mg =00

Mmyq #0; mg =00

150 MeV |- ----_ -

=~ ~ . g Tricritical Point

Hadronic

A
1 GeV
Nuclear Matter / "

Figure 1: Qualitative QCD phase diagram fbk = 2 according to general expectations. Rgr= 3 and
m < m, the diagram looks as on the left with the transition beingj firder all the way, while fom > m it
looks as on the right.

1. Introduction

1.1 Qualitative expectations

In the physics communities dealing with QCD at finite tempaeand density, there appears
to be little doubt that théT, 1) phase diagram qualitatively looks as in Fig. 1 (right). Givkat
until recently non-perturbative calculations were imloigsfor .t # 0, and even on the temperature
axis simulations with dynamical fermions have only becopssible in the last few years, it seems
worthwhile to recall the qualitative arguments that leathis picture. Such a diagram represents
one set of quark masses. As theorists, we also view the quaskes as parameters and wish to
understand the phase diagram of the entire parameter $pagems, T, 1}, which should aid us
in unveiling the physical situation as well.

Starting point of the argument [1] is tiy = 2 theory with degenerate quark masses. At zero
density and in the chiral limity,m = 0, the chiral condensate represents a true order parameter
distinguishing between separate phases, and the symmeslihg pattern iSU(2)y x SU(2)a —
SU(2)y. A local order parameter vanishing everywhere in one phadéeaing non-zero in another
corresponds to a non-analytical function of the parametittse theory, thus requiring a true phase
transition and excluding an analytical crossovkrthe corresponding phase transition is second
order, then chiral symmetry implies that it should be in the universalitass of 3dO(4) spin
models, a scenario which has been very popular among ttediste, however, that a first order
transition is a logical possibility as well.

For low temperatures and large densities, a humber of madellations (see e.g. [2]) ap-
pear to agree on a first order transition between nuclearemattd quark matter in a colour-
superconducting state, which is expected for asymptdtidégh density. Fig. 1 represents only
the simplest picture, other variants have one or severalgshetween the hadronic and the super-
conducting phase, see [2, 3] for more details. The most alaseenario then has the first order
line at finite density joining up with the second order lineming from the temperature axis in a
tri-critical point. On the other hand, if the quarks haveténmnasses, chiral symmetry is explicitly
broken and there is no true order parameter. The chiral cwmadee still experiences a rapid change
of value at the pseudo-critical temperature, but now it isiaalytic crossover. In this case the first
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Figure 2: Left: Pseudo-critical coupling and temperature definedheypeak of a susceptibility. Middle:
Schematic phase diagram fdf = 3. Right: Projection onto the critical surface.

order line at finite density has to terminate in a critical goidt.

For three degenerate flavols = 3, u = 0, the chiral limit exhibits a first order phase trans-
ition. First order transitions are stable under small wamig of the parameters, and thus the first
order regime extends to small masses: m, for which it can actually be measured on the lattice.
With increasing quark mass the transition weakens untihdsein a critical point atn., and for
m > m; a smooth crossover is observed. For theu) phase diagram this implies a first oder line
connecting the transitions on the axesriox m, while for m > m the first order line emanating
from the u-axis again has to terminate in a critical endpoint.

The “standard scenario” for the physical case Wth= 2+ 1 quarks is as in Fig. 1 (right), with
the critical endpoint moving to larger. with increasing quark masses, as may be inferred from a
continuity argument. Fal; = 3 with m < m. the phase diagram has a first order line connecting
both axes. Upon sendimgs — o this picture should continuously evolve into tNe = 2 diagram
with a critical endpoint, thus implyindy/dms > 0.

The full phase diagram of thid; = 2,3 theories is in the 3d spaden, T, u}, as in Fig. 2. In
order to map it out by simulations the first step is to identify critical surfacdy(u,m) separating
the high and low temperature regions. Since simulationglarays on finite volumes, this surface
is only pseudo-critical and represents a smooth crossaveran be defined by, e.g., peaks in
susceptibilites, cf. Fig. 2 (left). This step is typicallgtiher straightforward. The much more
difficult task is to perform a finite size scaling analysisderitify the order of the transition in the
infinite volume limit for the different regions of parametggace. FolN¢ = 3, such an analysis
yields a critical line separating a first order region fronr@ssover region on the surfa@g(u, m),
Fig. 2 (middle). It is convenient to eliminate the temperataxis from this diagram by projecting
onto the pseudo-critical surface, i.e. temperature isysvimplied to beTy(u, m), Fig. 2 (right).

This form of a phase diagram is particularly suitable to ldigghe three flavour theory with
non-degenerate massé§, = 2+ 1, including the special casdy = 2,3, as in Fig. 3. Note that
because of the difficulties of simulating dynamical fernsipaven foru = 0 (left) we know very
little about the critical lines separating the first ordemfr the crossover regions. Up to now the
only published point that has been calculated to some acgwvdh standard staggered fermions
is the critical pointm,g = ms = mc on theN¢ = 3 diagonal [4, 5, 6], which was numerically
identified to belong to the universality class of the 3d Isingdel [4]. While the statement about
the universality class concerns infrared physics and thsiable against cut-off effects, the location
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Figure 3: Left: Schematic phase diagram fdf =2+ 1 atuy = 0. Temperature is implied to be (pseudo-)
critical, To(my 4, Ms), everywhere. Right: The same with finite quark density.

of the critical point in the bare mass diagram is very saresiib renormalisation effects. To date
only N; = 4 calculations & ~ 0.3 fm) have been performed, but simulations with improvebast
give values form; which are about- 1/4 of the standard action result [4]. The critical line for
non-degenerate quark masses is being calculated presen{ly] and Section 8.3. All available
results are consistent with the physical point lying on tfessover side of the boundary. This has
also been found in a recent simulation with standard staglgguarks with a pion to rho mass ratio
tuned to its physical value [8].

When a finite quark number density is switched op-axis for the chemical potential has to
be added to the diagram, and the critical line separatindirsteorder region from the crossover
region turns into a critical surface, as indicated in Figight). The standard scenario witi(t)
being an increasing function of the chemical potential tingplies that this surface bends towards
larger quark masses. Consequently, tuning the quark massies physical point and switching
on a chemical potential, the intersection with the criteaiface marks the critical valye of the
end point, beyond which there is a first order transition. sTfaudetermination of the QCD phase
diagram in the full parameter spafey, 4, ms, T, 1} entails mapping out these critical surfaces and
understanding how they are joining up in the different lithikories.

1.2 Lattice QCD at finite temperature and density
Standard Monte Carlo simulations at finite density are magmsgsible by the so-called sign
problem of the lattice grand canonical partition function,

Z= /DU DYDye SVI-SU.v.4] — /DU [detM(u))fe SV 5 = ZLﬁML,U. (1.1)

For u =0, the relationsMys = MT guarantees positivity of the fermion determinant,Met 0, in
every gauge background. For the gauge group SU(3), thedardgaterminant becomes complex as
soon as a non-zero quark chemical potentiat g /3 is switched on. Thus it cannot be interpreted
as a probability distribution, which rules out standard amance sampling.
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The sign problem of QCD is still unsolved to date. Success@llitions of fermion sign
problems in a number of spin models by means of cluster dlgos [9] unfortunately do not seem
to generalize to QCD. However, significant progress has bete since 2001 with a number of
different approaches that circumvent the sign problenherathan solving it. These approaches
can be put into three categories:

e Two-parameter reweighting
e Taylor expansion inu/T

e Simulations at imaginary, either analytically continued to reglor Fourier transformed to
the canonical ensemble

All these methods have limitations and presently work byisonly for small enoughu /T < 1.
However, the systematics is different between them, thiasvelg for meaningful cross checks
(for a comparison of early results, see [10]). Another aliéive is to study related theories without
the sign problem, such as SU(2) QCD and QCD at finite isospin|atter being close enough to
the case of interest for meaningful comparisons. The fadtdt agree in the determination of the
pseudo-critical temperatuiig(m;, i) is one reason for the recent enthusiasm in this field, and give
reason to hope that the order of the transition may be seéttldek near future as well.

2. Massless\s = 2 at zero density: O(4) or first order?

Before delving into the discussion of finite density caltiolas, let us turn to thet = 0 beha-
viour of the theory which played an important role in the datibn of the qualitative phase diagram
in Section 1.1. Itis a longstanding question whether thesphignsition in the chiral limit of the
two-flavour theory is indeed second order with O(4) univiiigsar first order. On the lattice, O(4)
will effectively look like O(2) as long as there are discsation effects [11]. A lot of work has
been done over the years, but no definite conclusion has leeehed. Among the more recent
work, Wilson fermions appear to see O(4) scaling [12], wkil@ggered actions are inconsistent
with both O(4) and O(2) [13]. (The staggered strong couplimit, however, does display O(2)
scaling [14]).

A new attempt to tackle this question by means of a finite giadirgg analysis with unpreced-
ented lattice sizes was made in [15]. The work simulafes 4 lattices withL = 16— 32, using the
standard staggered action and the hybrid Monte Carlo Ritlign[16]. Several quark masses are
studied, the smallest being/T <0.055. In a critical region quantities like, e.g., the spediféat
or the chiral susceptibility scale universally as

Cy —Co ~ L“/Vfc<rL1/V,amLyh>, T=1-T/T
X ~ LYVE, <TL1/",am Lyh). (2.1)

Here the non-singular part of the specific heghas been subtracted. The values for the exponent
Vh are known with some precision and nearly the same for O(4)@(&). The authors of [15]
thus fix y, to this value, and then chooteand m for a series of simulations such as to keep
(amDh) constant. This reduces the two-parameter scaling probdedepend on one remaining
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Figure 4: Finite volume scaling behaviour with of specific heat andallsusceptibility. For O(4) viz. O(2)
behaviour, the data should fall on a horizontal line [15].
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Figure 5: Testing the mass scaling of the chiral susceptibility fo4)3(nd first order behaviour [15].

variable only, which can be more easily scanned. The infimtame limit in this procedure thus
corresponds to the chiral limit and allows to check whetherdata are consistent with the predicted
scaling behaviour.

Fig. 4 shows simulation results from [15]. Scaling as in gl would imply the data points to
fall on a horizontal line, which is clearly not the case. Aftatively, one may keep the other scaling
variable LYV fixed and vary the quark mass. Furthermore, in place of O(4€)(@) exponents,
also consistency with first order exponents can be tried. éS@sults of this attempt are shown
in Fig. 5. The fit to first order scaling is slightly better, mdt very convincing either. Moreover,
D’Elia et al. looked in detail at plaquette distributionstire transition region as well as Monte
Carlo histories. No signs of a metastability region commegig with a first order transition could
be observed.

Many variations of the analysis are performed in [15], withikar outcome. Hence, even after
formidable computational effort the question of O(4) vsstfiorder scaling remains open for the
moment. There are several possible explanations. Thengaagion away from the chiral limit
could be exceedingly small, or discretisation effects dqliy a large role. This is also suggested
by the fact that Wilson and staggered fermions appear te stifierently. The question of cut-off
effects will be addressed by the authors of [15], who annedram investigation df; = 6 as well.
Another possibility is that exceedingly large volumes nilgé required to distinguish weakly first

016/6



The QCD phase diagram at zero and small baryon density Owe Philipsen

order and crossover. An example for such behaviour is twouedQCD in the strong coupling
limit. Numerical results for this theory require latticeesL > 128 before the correct scaling is
observed [17]. An important observation is that, for botbrarios in Fig. 5, it is the lowest mass
data points which spoil the fits. This indicates possibldesysatic errors of the Monte Carlo for
very low masses. We shall indeed see in Section 8.3 thatdmelgime the R-algorithm has strong
step size effects for steps of half the quark mass, as chos#émeflowest mass point in [15]. These
effects change the apparent order of the phase transithuurs, Tor any future investigation an exact
algorithm is necessary. Meanwhile, we should keep an opad toithe possibility of a first order
transition in the chiral limit. In this case the phase diagtfaig. 1 would be as foN; = 3 with a
very small critical quark mass.. There would be a first order line all the way for< mc, or a
first order line with an endpoint, Fig. 1 (right), far > m..

3. Finite density phase diagram from two parameter reweighing

Significant progress enabling finite density simulations weade a few years ago, by a gener-
alisation of the Glasgow method [18] to reweighting in twograeters [19]. The partition function
is rewritten identically as

~S(B)
2= <e‘§g(ﬁo) d:;hﬁlzﬂpfgz))) > : (3.1)
1=0.Bo
where the ensemble average is now generatgd-at0 and a lattice gauge coupling, while a
reweighting factor takes us to the valyes3 of interest. The original Glasgow method reweighted
in u only and was suffering from the overlap problem: while theaighting formula is exact,
its Monte Carlo evaluation is not. The integral gets apprated by a finite number of the most
dominant configurations, which are different for the revistdgl and the original ensemble, and
this difference grows withu. When calculating critical behavior at sonue one-parameter re-
weighting uses a non-critical ensembleLat 0, thus missing important dynamics. By contrast,
two-parameter reweighting proceeds along the pseudoairline of the phase change, thus al-
ways working with an ensemble that probes both phases. Pipiooach produced the first finite
density phase diagram from the lattice, obtained for ligkargs corresponding tm; ~ 300 MeV
[20]. A Lee-Yang zero analysis [21] was employed in order tal fihe change from crossover
behaviour atu = 0 to a first order transition fop > .. A later simulation at physical quark
masses puts the critical point g§ ~ 360 MeV [8], Fig. 6 (left). In this workL3 x 4 lattices
with L = 6 — 12 were used, working with the standard staggered fermitaraand using the R-
algorithm. Quark masses were tunedngq/To ~ 0.037,ms/Tp ~ 1, corresponding to the mass
ratiosmy/m, ~ 0.19,m;/mx ~ 0.27, which are close to their physical values.

A difficulty in this approach is that the determinant needédoevaluated exactly. Because
of the sign problem the reweighting factor is exponentialiyppressed with volume and chemical
potential, thus limiting the applicability to moderate wat of those parameters. This point will be
discussed in more detail later. Moreover, since the sedidtuctuations are those of the simulated
ensemble instead of the physical one, it remains difficutikitain reliable error estimates. For a
proposed procedure see [22].
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Figure 6: Left: The phase diagram for physical quark masses as pegdlist the two parameter reweight-
ing method [8]. Right: High density results from the dengifystates method for the four-flavour theory,
indicating a triple point [24].

In present work in progress two-parameter reweighting mslmioed with the density of states
method [23], in order to extend the applicability of reweigh to larger values ofi/T and thus
to lower u. First interesting results, with indications for a possitsiple point, are shown in Fig. 6
and presented in more detail in these proceedings [24].

4. Finite density by Taylor expansion

Another method to gain information about non-zgris to compute the coefficients of a Taylor
series expansion of observables in powerg ¢ . Early attempts have looked at susceptibilities
and the response of screening masses to chemical pot&&j26, 27, 28]. More recently it has
also been used to gain information on the phase transitidrtsunature itself [29]-[32]. This idea
exploits the fact that on finite volumes there are no nonyaicakansitions, and hence the partition
functionZ(m> 0, i, T) is an analytic function of the parameters of the theory. Realsenough
u/T one may then hope to get away with only a few terms, whose caffs are calculated at
¢ = 0. Moreover, CP symmetry of the QCD action translates intefl@etion symmetry of the
partition function,Z(u) = Z(—u), such that real physical observables have series expanision
(u/T)2. Thus, in particular the pressure density can be expressad aven power series,

P =~ = () oozTw. 5= 5 eaM) (F)" @)

Since only even terms appear, the coefficients are equivalgeneralised quark number suscept-
ibilities at u = 0, and hence measureable with standard simulation teamidgeor high enough
temperatureg > Ty, the scale of the finite temperature problem is set by the bdat® mode
~ 11T, and one would expect coefficients of order one for an exparisithe ‘natural’ parameter
u/(mT) [6]. We shall see later that this is borne out by simulatigults.
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Since all theu-dependence in the partition function is sitting in the femmdeterminant, it is
derivatives of the quark matrix that need to be computed,

dIndetM oM otrm—1 oM
—— =tr(M 1= =—tr(M1=—=m1 t 4.2
du r( 0u>’ ou r< au > e .2

which can be iterated for higher orders. These expressiensnbe increasingly complex and
methods to automatize their generation have been devisgd [Sote that one now is dealing
with traces of composite local operators, which greathjlifates the numerical evaluation in a
simulation compared to a computation of the full determinarhe numerical estimate of these
expressions proceeds by the random noise method, withetjyp©(10) — O(100) Gaussian noise

vectors.

If one is interested in phase transitions, finite volumeisgabwards the thermodynamic limit
has to be considered. True phase transitions will emergeraamalyticities in the pressure, which
is not the case for analytic crossover behaviour. Givenithéte two flavour theory with finite
masses and fqu = 0 the deconfinement transition is an analytic crossovernuegexpand about
¢ = 0 and then look for the emergence of a finite radius of convergi@s the volume increases.
The radius of convergence of a power series gives the distagigveen the expansion point and the
nearest singularity, and may be extracted from the highrdreleaviour of the series. Two possible
definitions are

1/2n
; M=

% 1/2

Con

Con

(4.3)

p,r=1lim py,rn with pp=
n—oo Con+2

General theorems ensure that if the limit exists and asyioptly all coefficients of the series are
positive, then there is a singularity on the real axis. Mataills as well as previous applications
to strong coupling expansions in various spin models carobed in [33]. In the series for the
pressure such a singularity would correspond to the cripicant in the (u, T )-plane.

The study of finite size scaling of a Taylor series presentyritlable technical task. Since
the coefficients are generalised susceptibilities, eathenfi exhibits non-trivial finite size scaling.
The scaling of the individual coefficients, evaluateguat 0, has to combine to the correct scal-
ing of the finite density pressure given by the sum, thus regudelicate cancellations between
the individual contributions in the large volume limit. G&fications of the behaviour of various
generalised susceptibilities are given in [34].

4.1 Quark number susceptibility to order u® for Ny = 2

New results from this approach were reported this year byaGawd Gupta [32]. They per-
fomed simulations oh? x 4 lattices withL = 8 — 24, using the standard staggered action and the
R-algorithm. The quark mass was fixed in physical unitefd@ = 0.1. The aim of the simula-
tions was to bracket the critical point by computing the dayoefficients of the quark number
susceptibility up to sixth order (i.e. 8th order for the mu®) for various temperatures in the range
T /To=0.75—2.15, and extrapolate to finife. This was done for different lattice volumes in order
to get an estimate of finite voulme effects.

The results for the convergence radius Eq. (4.3) are showmin/. A rather strong volume
dependence is apparent. While for the smalfelatice the estimatorp,,r, do not seem to con-
verge to a finite radius of convergence, the results on tlgeia24 lattice are consistent with
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Figure 7: Estimators of the radius of convergence, Eq. (4.3),/& = 0.95. p, (left) andry, (right) vs. order
non & (red circles) and 2%(blue squares) [32].

settling at a limiting value. The boundary between the twbhav@ours was observed to occur at
Lm;~ 5—6 orL ~ 16— 18, with larger volumes tending to a smaller radius of cogeece. It is
reassuring that the numerical values fgrandr, are consistent with each other. Taking the large
volume result at face value and extrapolating to all ordeesestimate for the location of the critical
pointisug/T =1.1+0.2 atT/To = 0.95, orug/Tc = 1.1+ 0.2 [32].

4.2 The pressure to orderu® for Ny = 2

Another investigation of the finite density phase diagrartheftwo-flavour theory was made
by the Bielefeld-Swansea collaboration, also using thdofagxpansion of the pressure. This
group works with a 18x 4 lattice with p4-improved staggered fermions and a Synkainzproved
Wilson action, simulating with the R-algorithm, the quarlkass is set ton/Tyo ~ 0.4. The calcu-
lation to orderu® was performed in [30] while new results @if are presented in [31]. The last
work also contains detailed discussions of two intereséinglytic calculations to compare with,
namely the pressure in high temperature perturbation y{&6t, which is going to hold at asymp-
totically high temperatures, as well as the hadron resa@ngas model, which gives a rather good
description of the pressure in the confined phase [36].

In agreement with [32] and qualitative expectations, tdeiailed results for the coefficients
in the pressure series satisfy <« ¢4 < ¢ for T > Tp, i.e. one would have coefficients of order
one for an expansion ifu/7T). An impression of the convergence of the series can be @atain
by looking at the quark number susceptibility calculate@ddasecutive orders, as shown in Fig. 8.
For T <1.2Ty, the series seems to converge rapidly anditheesult is compatible with the one
through orde®. Around the transition temperatuifg, the u*-results show a peak emerging with
growing u/To, which in [30] was interpreted as evidence for a criticalnpoiHowever, theu®
contribution suggests that in this region results do notgeterge, and the structure is hence not
a significant feature of the full pressure.

Another analysis of the data in [31] is devoted to a study efdbnvergence radius. Fig. 9 (left)
shows the ratio of the Taylor coefficients at consecutiveermdin the relevant regioh < Top, the
data do not seem to settle on a limit value. More strikindilg, data appear to fall right onto the solid
lines marking the prediction for those ratios from the hadmsonance gas model, on both sides
of the transition. The hadron resonance gas model doescpiediagedorn-like deconfinement
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transition, but as a smooth crossover rather than a reaéghassition. Thus the data do not give
any indication of a critical point. This is corroborated kg (right), showing the quark number
density normalised on the susceptibilty,/ xq = g—rz. This quantity is related to the compressibility
in the plasma, and should go to zero at a second order phaséitia point.

Thus the conclusion in [31] is that there is no evidence fdtieat point from these data. This
conclusion is not in conflict with the results from [32] dissed in the previous section, since the
simulations were done at a much larger quark mass, for whiehamuld expect a critical point to
be at larger values @f. Moreover, a different action was used, making a direct amispn difficult.
However, the conclusion is different from the earlier onettly same group based gt results

[30], which were interpreted as showing evidence for agaitpoint. This highlights the need for a
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careful examination of as many terms in the series as pes$ibfore results are conclusive. Indeed,
previous experience with inferring phase structures fronvergence properties of strong coupling
series in spin models [33] shows that this is very much anégrmental science”. Between 10-
20 terms are known in some of these expansions, and whileofoe snodels stunningly good
predictions about non-analytic behaviour are obtaindtkrststill fail even at this high order.

5. QCD at finite isospin density

Another way to learn about QCD at finite density is by takingorese to theories without a
sign problem, which are sufficiently close enough to the aysituation of interest. | shall not go
into the long list of activities along those lines, but cantcate on QCD at finite isospin density with
chemical potentialy [37]. For small enoughy, /T it can be argued that this theory should agree
quantitatively with that at small /T, and recent lattice simulations support this picture [38, 3

QCD at finite isospin density is obtained from two-flavour QBYpassigning opposite chem-
ical potentials to the quark flavouns, = — g = U, leading toy; = (Uy — Uq) = 2. This results in
cancelling the phase of the determinant, so that the artitinction now contains only its modulus
and thus has real positive measure, which can be simulatedwtiproblems,

Z= /DU |detM (p)|Nre S, (5.1)

A schematic phase diagram of the theory is shown in Fig. 10th@fower right it features a pion
superfluid phase, due to pion condensatian) = 0 when|y | > my;. Note that in nature one
cannot have a system with # 0 andpg = 0, since the weak interactions do not conserve isospin.
The interest in this theory is because of its formal relatmi@QCD at finite baryon density. It is
also in this formal sense that the concept is generalisétt te 3. Indeed one would expect that
for  sufficiently small it should recover the physics at smallardensity, and hence the dashed
transition line in Fig. 10 should be approximately the saménahe theory with baryon density.
The argument goes as follows [38]. An expectation valueuatatl at finite baryon density can be
rewritten as an expectation value evaluated at finite isodpnsity by means of the reweighting
formula, 0
<O>Il _ <<eleieo>>lll—211.
Hm=2u

Now consider probing the deconfinement transition with agic observabl®©, e.g. the plaquette
susceptibility showing a peak. As long &0s6),, ~ 1, the observabl®' = €90 will signal the
same transition a. But in this regime one may as well neglect the phase altegeatihwhich case
one probes the transition at finite isospin density. Basatismrgument, one expects the transition
lines in the two theories to be close to each other as longvesighting works, i.e. folu/To < 1.

(In an expansion abow = 0, the difference should be of the order(62)). This expectation
was numerically verified for the pseudo-critical surfaggm, i) in the Ny = 2,3 theories. In
the two-flavour theory, the Bielefeld-Swansea collaborafperformed a Taylor expansion both
in baryon and isospin chemical potential, and the resultisgudo-critical lines were found to
guantitatively agree [30]. Similarly, quantitative agment was found between the pseudo-critical
lines determined from finitg, [38, 39] and imaginary chemical potentjal [40, 6].

(5.2)
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Figure 10: Schematic phase diagram for QCD at finite isosipin density.

6. Systematics of reweighting and Taylor expansion

A few years into their existence, there are now several tigations of the systematics of the
reweighting and Taylor expansion approaches. Recalliegittuble reweighting formula

nf
0] ejAIndelM efASJ
(O)gw = < T AINdeM o AS, /20 ~e (6.1)
(ea € 79)(50.0)

one would like to estimate when the exponential suppressidhe signal becomes insurmount-
able. Splitting the determinant into modulus and phase\idet detM |€?, this should occur when
(cosh) <« 1, or equivalently when the root of the variance of the phddeedeterminant grows
larger thanr/2,

0(68) = 1/(62) — (0)2 = 1/(62) > /2 6.2)
In order to quantify this, the Bielefeld-Swansea collatioraevaluated the phase by means of its

Taylor expansion [31],
N p?-l 92-lindetv
(m _ 1 H
D N T T 63

Contours of values for the variance are shown in Fig. 11. Atiog to the criterion Eq. (6.2), the
line corresponding to" = 11/2 can be viewed as the boundary for the reliability of rewgigh The
region to its lower right is safe while one would not trustules obtained up and left from it. This
means the deconfined phase of QCD is rather accessible agaxkpehile in the transition region
one finds the constraint/Tp < 1, in accord with the constraint on other methods. The fighogvs
contours for one given volume. Reweighting gets exponinti@rder with volume, and thus the
contour lines move rapidly to the lower right as the volummdseased.

In another paper [41] Ejiri discusses the difficulties of anbined application of reweighting
and an analysis of Lee-Yang zeros (LYZ) [21]. The latter eitplthe fact that on a finite volume
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14
T/T,

Figure 11: Contours ofo(0) for a fixed volume 18 [31].

there are no singularities in the pressure, and hence nesefothe partition function for real
couplingsf3. However, there are zeroes for comlex couplings, whosgegaindicates the location
of an analytic crossover, i.e. the pseudo-critical temipeedly. In the infinite volume limit, these
zeroes move to the real axis if there are true phase tramsjtishile they stay at complex values
for crossovers. A LYZ analysis for reweighted finfiethen amounts to numerically searching for
zeros in the expression

Znorm(Bre, Bim, 1) = ) (6.4)

< 5iBimNsiteAP 6 | (Nt /4) (IndetM (1) —IndetM (0)) ‘ >

(BR61070>

where one additonally reweights into the complex couplitan@. Ejiri argues in [41] that this
combined procedure does not have an infinite volume limikinEgV — oo at finite statistics, the
above expression for the partition function will always gaéro because of the sign problem, and
hence always signal a phase transition, even where thererissaover. This point of principle
is not surprising. Indeed the same mechanism precludes arieahinfinite volume limit ofany
observable computed via reweighting. However, the gquegtio practical simulations is whether
for a given volume enough statistics can be gathered to heasign problem, and whether the
volume is large enough to reproduce infinite volume physiith sufficient accuracy. Eq. (6.4)
illustrates the difficulty of this procedure: the LYZ get rkad by the noise from the reweighting
factor, and one has to guard against mistaking a disappeaigmal for a Lee-Yang zero. The
problem boils down to being able to give reliable errors f@ teweighting procedure, which are
needed for a qualified judgement on whether statistics fecgrit or not.

In an interesting qualitative investigation of systemsti€plittorff makes use of the finite
density formulation [42]. He suggests to turn the reweightirgument for approximate equality
of finite isospin and baryon density around, in order to daetee the limit of applicability for
reweighting. For this purpose a matrix model prediction] [#8 the transition line to the pion
liquid is combined with the contour lines for the variancetaf phase of the determinant, Fig. 11,
as shown in Fig 12 (left). The value of(6) rises towards the lower right, and one observes that
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Figure 12: Left: rescaled version of the contours @f6), Fig. 11. The values of the contours increase
towards the lower right and approach the transition linehi pion condensate at finite isospin density.
Right: the critical endpoints for two sets of quark massethleyreweighting method [20, 8]. From [42].

contours become denser with larger values, approachingeahsition line to the pion liquid. This
is to be expected on the grounds that a non-trivial phaseefldterminant wipes out the pion
condensate, which is not present at finite baryon densityncel&plittorff suggests to interpret
the transition line to the pion liquid in the theory at finiso$pin density as a “cut-off” for the
applicability of reweighting: continued reweighting teethght of that separating line would mean
one has a serious overlap problem, since the presence oh#se pnakes a physical difference
there. That this is a matter worth exploring in more detaisti®wn in Fig. 12 (right), which
displays the critical endpoints from reweighting for twéfelient quark mass sets [20, 8], and both
fall in the neighbourhood of this boundary.

A similar argument may be applied to results from the Taylgramsion. For larger volumes,
the sign problem becomes more severe. In the Taylor expgnsiwose coefficients are evaluated
at u = 0, this shows up in two ways. Firstly the need for more termdescribe the sharpening
divergence in its build-up. Secondly, the need for ever mpoeeise cancellations between different
terms in order to combine to the correct volume scaling biebawf the sum. But the severity of
the sign problem also puts a limit ry T for fixed volume, as we have seen already. Checking in
Fig. 8 at which values ofit /Ty the sixth order contribution to the susceptibility becormegortant
for a given temperature, Splittorff concludes that the 4tfeo expansion only works to the left of
the leftmost contour line in Fig. 12 (left). Approaches lshee imaginaryu never face the sign
problem. However, as dicussed in the next section, anatgiitinuation to realt necessitates a
Taylor expansion too, and one would expect a similar lirutatOf course, these estimates are not
yet quantitative, as the finite isospin transition line isedmined from a model and not known with
any accuracy, but they point out interesting directionsuspe.

7. QCD atimaginary u

Since the QCD fermion determinant with imaginary= iy; is real positive, it can be simulated
just as foru = 0. It is then natural to ask whether such simulations can Ipdoited to learn
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Figure 13: Left: Schematic phase diagram for QCD at imaginary chenpiot#ntial. Right:Ns = 3 results
after continuation [6] and comparedity = 2+ 1 [20]. The light quark masses are the same.

something about physics at rgal The strategy to get back to realis to fit the Monte Carlo
results, wich are free of approximations, to a Taylor sdrigs/T. In case of apparent convergence
it is then easy to analytically continue the power serieset . This idea was first used for
observables like the chiral condensate and screening miastbe deconfined phase [44, 27]. It was
then shown to be applicable to the phase transition itsélf ghich has recently been exploited in
a growing number of works [6]-[49].

The patrtition function, o

Z(V,u,T)=Tr (e—< —NQVT), (7.1)

is periodic in the imaginary direction, and the period carshewn to be 2r/N. for N; colours
[50]. Hence, in addition to being even jn the QCD partition function has the additional exact
symmetryZ(uy /T, i /T) = Z(u: /T, /T + 211/3). Because of the fermionic boundary conditions
in the Euclidean time direction, this symmetry implies thahift in i by certain critical values
is equivalent to a transformation by t3) centre of the gauge group. Thus, there Z(8)
transitions between neighbouring centre sectors fo@allT)c = %’T (n+ %) ,Nn=0,£1,£2,....
It has been numerically verified that these transitions ast¢ dirder for high temperatures and a
smooth crossover for low temperatures [40, 45]. As a cormsrp) the schematid, 1) phase
diagram looks as in Fig. 13. The vertical line coming from tbp denotes th&(3) transition,
while the deconfinement transition line now bends upwards famiction ofy;. The order of the
transition and the existence of an endpoint depends agaimeamumber of flavours and the quark
masses. Because of the symmetry of the partition functigrpibture is then periodically repeated
for larger values of.

The idea then is to simulate with imaginary chemical posntnd fit the full simulation
results by a power series of ordér

(0) — icn (%)2 (7.2)

Since the Monte Carlo results contain no approximationwrdation, convergence can be inspec-
ted by the quality of the fits to the data. In the case of satiefs convergence analytic continuation
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L — i is a trivial matter. It was shown that this strategy can bemaed to the pseudo-critical
line itself, which on finite volumes is a smooth function with even Taylor expansion [40]. De-
tailed comparisons give quantitative agreemenifom, 11) computed from imaginary and other
methods [6, 45], cf. Fig. 13. There are also first resultdNpe= 4 with Wilson fermions [49].

This procedure may be expected to converge as long as the ohjy does not exceed the
critical value of the firsZ(3) transition,|u|/T < 11/3, or ug <550MeV in physical units. This
constraint is due to two limitations. Firstly, in the infiaivolume limit the location of th&(3)
transitions would bound the radius of convergence of thdoFageries. And secondly even on
finite volumes, where there are no non-analyticities, no m#armation is obtained by going to
larger 1; because of the periodicity. Nevertheless, interestingraemts are being made that one
might well extend the continued results along the yealxis beyond this radius with the help of,
e.g., Padé approximants [51].

Working at imaginaryu has a couple of technical advantages. It is computatiorsithple
and much cheaper than reweighting or computing coefficigintise Taylor expansion. Moreover,
both parameterg, u are varied and thus one obtains information from statifyic@dependent en-
sembles. It also offers some control on the systematicsitwyialg a judgement on the convergence
of the fits. Furthermore, it is a good testing ground for effecQCD models: analytic results can
always be continued to imaginagyand be compared with the numerics there, as demonstrated for
several examples in [46]. The main limitation presentlyhis tadius of convergence in the large
volume limit, u/T ~ 1.

7.1 A generalised imaginaryu approach

The method of simulating imaginagy and analytically continuing can be generalised in an
interesting way, as suggested by Azcoiti et al. [47]. Thaideto rewrite the standard expression
for the staggered fermion action at finite density [52] bylaejmg the chemical potential with two
new parameters,y,

1 —
> Y Gnno(m) (&#Unotihso e #3U] o otho)
1 n 1
- XE ; Ynno(n) (Un,OL/-’n+0 - Ur;r_o,ol.UnfO) +y§ Z YnNo(n) <Un,ol.Un+o + Ur:r—qoq—’nfo) (7.3)

wherex = coshau ),y = sinh(a). This means the action has been enlarged by an extra paramete
The ordinary finite density action is recovered by the camstx? —y? = 1. Thus, if the solid line in

Fig. 14 denotes a phase transition line inxtyeplane of the enlarged theory, its intersections with
the dotted line representing the constraint correspondysipal transition points. The enlarged
theory still has the sign problem, but one can simulate aginzayy = iy. The potential of this
method to improve over the simple imaginanapproach is that there are now different parameter
setsx,y to be simulated, so one might hope to be able to extrapoladecontrolled way to reach
larger values oft/T and thus probe the phase diagram at lower temperatures.

Numerical results from this method for the four-flavour thebave been presented in [48].
Simulations were performed or? & 4 lattices with standard staggered fermions and the Hybrid
Monte Carlo (HMC) algorithm. Fig. 15 shows results for theyo-critical coupling obtained
at imaginaryy, fitted to the formg.(y) = Bo + Bry? and continued to real. The vertical dotted
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Figure 15: The critical coupling in theN;s = 4 theory as a function of imaginagy The leading order
guadratic fits are continued to realthe intersection with the vertical line gives the physiglie [48].

line gives the intersection with physical QCD. Clearly, thethod works as well as the ordinary
imaginaryu approach. However, its full potential of simulating diffet sets ok, y for a fixedu /T
has not been probed yet. Fig. 15 (right) shows an exampleasfdtrthat was extrapolated beyond
the firstZ(3)-transition, which shows up by the kink in the data. This ie@lon the grounds that no
such kink is present in the real direction. Neverthelesendar imaginaryy, beyond the kink the
curve is not constrained by any additional data points, amté convergence of the extrapolation
is not guaranteed.

New and as yet unpublished results for the two-flavour thedgtk indications of a critical
point are presented in these proceedings [53]. An int&xg@spen question is whether the method
can indeed be used to obtain more control over analytic woation. Another promising idea by
the authors is to use their action for reweighting. The twapeetersc,y might be tuned such as
to shorten the reweighting distance to the physical poiintefest.

7.2 Imaginary u and Fourier transformation: QCD at fixed baryon number

Last year promising attempts of an alternative use of inegip have been made [54, 55].
This approach makes use of the relation between the grarahicah partition function at ima-
ginary chemical potential and the canonical partition fiorcat fixed baryon number via Fourier
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transformation [50, 56]. After earlier attempts on a Hulbbarodel [57], there are now promising
new results on QCD presented in these proceedings [58, B@]difficulty in this case is to make
baryon number large enough so as to reproduce the finite chepotential calculations in the
thermodynamic limit.

Baryon number is fixed by inserting(3B — [ d3x @y ) into the path integral. The result
is the canonical partition function, which is related to gfrand canonical partition function at
imaginaryu via a Fourier transform,

Lo issk o
Zc(B) = Zﬂ/,nd <-|- > e T Zoc(U = i) (7.4)
The idea followed in [54] is to samplsc (U = ivc) by Monte Carlo, and then compute
Zc(B) < 1 / i . >
. = . duexp(i3B= ) det(iL;) ), 7.5
Zc(iume) det(itmc) Hi p( T> i) (7.5)

i.e. the fermion determinant gets Fourier transformed, smil has to be calculated exactly. This
is costly, but the benefit is that now no analytic continuatio Taylor expansion is needed. The
sign problem of course resurfaces here as well, makgi®) noisy. But the strength of this effect
is governed by baryon number, and not by volume directlyh&nthermodynamic limit one would
have to send baryon number to infinity in order to have fixegydramumber density. Thus, the
larger the volume, the smaller the accessible baryon nuddresity for a simulation. Nevertheless,
fixing a small baryon number makes sense in order to studyedgear few body systems, and as
the following results show, with sufficient computer poweeaan reach reasonably large baryon
numbers to make contact with the grand canonical formuiatio

Numerical results obtained by de Forcrand and Kratochvidashown in Fig. 16. They were
obtained on a $x 4 lattice with Ny = 4 standard staggered fermions and hybrid Monte Carlo
simulations, the quark mass wagTy ~ 0.2. The left panel shows the conversion from baryon
number to chemical potential. This is achieved by evalgettie free energy (B) as function of
different fixed baryon numbers, and computing the grand miaabpartition function by Laplace
transformation. The integral can be evaluated by means adde point expansion,

Zooltt) = [ dpexp<—¥<f<p> - up)> | (7.6)

yielding the chemical potential as a function of baryon nemb

u~f(p) ~ F(B“;_F(B). 7.7)

As Fig. 16 (left) shows, on a%dattice it is possible to perform this up to quite respecabl
baryon numbers. The resulting picture essentially showdvthxwell construction for changing
between canonical and grand canonical ensembles. ThepBeslsarves are indicative of a first
order phase transition and represent the metastabilitgrmedhe two envelopes can be ascribed to
the hadronic and quark gluon phases and are well fitted byhaadrd weakly interacting massless
gas models. Preliminary results from the canonical ensewitiained with Wilson fermions have
been published in [55] and are presented in these proceefbagy
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Figure 16: Left: Numerical Maxwell construction to relate the canahiand grand canonical ensembles.
Right: Comparison of different methods. Agreement is gitatinte for p/T < 1. From [58].

Fig. 16 (right) shows the resulting critical line for the fdilavour theory in comparison with
ones obtained by other methods discussed here. All datacarraged with the same action and
for the same quark mass and lattice spacing, only the voluliffes between the data sets. For
u/T <1, the quantitative agreement is impressive. Only the data {46] are somewhat off the
others, presumably due to the much larger volume of thats#taNote that fou /T > 1.3 agree-
ment stops and the different data sets diverge. This is iordagith the previous statements that all
methods discussed have roughly the same range of appiligdiiit different systematics. The data
continued from imaginary in this region are essentially unconstrained and just pateded. For
the reweighted data points the expectation value oBdegjuoted in the figure for selected points.
For u/T > 1.2 it is completely lost in the noise and hence the data poirgsnat trustworthy.
Note also that the data coming from the canonical ensemiglgriniple do not have the restriction
u/T <1. The data bend down more strongly as one might expect imegisn of the phase dia-
gram. It will be exciting to see whether the curve can be bbfiontinued beyongi /T ~ 1. With
the density of states method [24], Padé approximants [5d }faea canonical ensemble [54], there
are at least three attempts at work in this direction.

8. The critical end point and its quark mass dependence for tree flavours

As has become clear by now, a determination of the order gftitase transition and the critical
point is much more demanding than the location of the pseuitioal temperaturdo(m, ). The
best starting point for such an enterprise is fhe= 3 theory. This is because we know there is
a critical point aty = 0. In the phase diagram Fig. 3 (left), the critical quark maggu = 0)
separating the crossover from the first order sections dlmmghree flavour diagonal is known to
be at a moderately small value accessible to simulatiors B], With the quark mass tuned to this
value, the first order transition line in ti&, u?) phase diagram Fig.17 (left) reaches all the way to
the temperature axis, on which it ends with a critical endpoAccording to the standard scenario
discussed in the introduction, if we now increase the quaaksno values > m;(0), the whole
transition line shifts, with the critical endpoint wanduwegito the right towards a reak. # 0, thus
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Figure 17: Left: Schematic phase diagram in tfig u?)-plane for different quark masses. Solid lines are
first order, dotted lines crossover, and the thick line repnés the endpoints. Right: The critical quark mass
as a function of4?. The vertical line on the left marks the fii&(3) transition at imatinary.. From [6].

tracing out a smooth functiom:(m). On the other hand, if we change the quark mass tom(0),
the critical endpoint should wander in the imaginarglirection to the left, as shown in Fig. 17.
Inverting the functionuc(m), we are interested how the critical quark mass separatiag fir
order from crossover changes wijth This function again has a Taylor expansion in even powers
of u, and one expects
me(1)
me(u = 0)
with coefficients of order one. In the three-dimensionalgghdiagram of Fig. 3 (right) this means
we are looking for the curvature of the critical surface ia iy = 3 direction atm(0). Once this
functional dependence is determined, it will return théical end pointy, for a given quark mass.

:1+c1(%)2+... 8.1)

8.1 Numerical results forN; = 3 from imaginary u

This program was recently carried out in [6], usintp84 lattices with the standard staggered
action and the R-algorithm. The observable used to find itieadpoint was the Binder cumulant,
making use of the knowledge that the transition is in the ensiality class of the 3d Ising model.
For a critical point in this universality class the valueBafis accurately known,

((ogy)*)
((oyy)?)?
while By — 1(3) for a first order transition (crossover). Hence in the inéiniblume limit B,

is a non-analytic step function. However, on finite volumewill pass through the Ising value
smoothly, with a slope increasing with volume. Measuremdot several values of imaginary
¢ and quark masses are shown in Fig.18 (left). The data cantée fit a leading order Taylor

expansion in both the quark mass and chemical potentialtabeknown critical point atn(u =
0),

Ba(Me, o) = — 1604 V-, (8.2)

Bs(amau) = 1.604+ B (am—am,(0) + A(au)?) +... (8.3)

From the fit parameters one can directly extract the desioefficientd(am)/d(au)? in lattice
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Figure 18: Left: The Binder cumulant calculated for various massesaramical potentials. The value
1.604 corresponds to a critical point. Right: Finite volusealing~ LYV of the fit parameteB, Eq. (8.3).
v = 0.62(3) is consistent with the universal Ising exponent 0.63 [6].

units. For the continuum conversion one needs to take irtouwat that the lattice spacing effect-
ively changes withil (1), and hence(u) # a(0). Forcy in Eq. (8.1) this yields

1 dme m™  dam) 1 dT
me(0) d(p/mT)? — NZ(amy)(0) d(ap)?  Tod(p/mT)?’

Fig. 18 (right) shows a finite size scaling analysis of the dfeicientB, and the fitted volume
scaling nicely reproduces the exponent predicted by usaligy even on moderate volumes. Note
that these are extremely difficult calculations, as venglttonte Carlo trajectories of order 80k
are required in order to get sufficient tunneling statistics

In accord with qualitative expectations, ~ 0.8(4) [6] is of order one. However, the large
statistical error indicates that the coefficient is alsoststent with being close to zero. Independent
of the accuracy of the result, an important conclusion i$ thachanges very little whem is
switched on, or conversely that changes rapidly under small variations of the quark mass.

cL= (8.4)

8.2 Numerical results for Ns = 3 at finite isosipin density

In a recent article Kogut and Sinclair report on similar stgations in the theory at finite
isospin density [39]. They work oh® x 4 lattices withL = 8 — 16, using the standard staggered
action and the R-algorithm. Their quark mass is chosenasn.(0), with the aim to see how the
critical point moves as a function @f. As an observable they use the Binder cumulant discussed
in the previous section. Results from their simulationsséi@vn in Fig. 19. The left panel displays
an investigation of step-size effects on the Binder cuntulahich are found to be significant in this
guark mass regime. Instead of extrapolating to zero steptie standard usage of the R-algorithm
is to simulate at some reference step size whose error isrktmine smaller than typical statistical
errors at some reference mass When going to smaller quark masses, a common practice is to
keep the step size to be half the bare quark mass. Howevke law quark mass regime of interest
here, this procedure clearly breaks down, with even qtigtahanges of the results. The figure
shows how at the same quark mass the transition looks cléestyorder for large step sizes, but
changes to crossover behaviour once extrapolated to zgsize, which thus is mandatory.
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Figure 19: Left: Stepsize dependence of the Binder cumulant. Rightd&i cumulant extrapolated to zero
stepsize. Dependence on isospin is very weak [39]

The right panel shows the results after such extrapolatiame been performed. In agreement
with the findings from imaginary in the previous section, the Binder cumulant is practictidy
and only very weakly depending qn. All data points are well in the crossover regime. What is
surprising is that the weal; -dependence has a tendency d@;/du? > 0. This would imply that
asy, is switched on the transition moves deeper into the crossegane, instead of approaching
a critical point!

8.3 Nf = 3and N; = 2+ 1 with an exact algorithm

In order to check for stepsize effects and clarify the sigthefu-dependence dB4, de For-
crand and | have redone thie = 3 calculation of [6] reported in Section 8.1 with the exadiomsal
hybrid Monte Carlo (RHMC) algorithm developed by Clark, Kedy and Sroczynski [60] (also
presented in these proceedings [61]). In a first test we coedEimulations of the Binder cumu-
lants performed with that algorithm to ones from the R-athon extrapolated to zero stepsize. The
results are shown in Fig. 20 (left), and perfect agreemdotiisd. The right panel then shows a new
determination of the critical quark masg(u), both for zero density and an imaginary chemical
potential, using the RHMC algorithm. Note that the Bindemelant now passes its Ising value
at a significantly different mass compared to the resultbénliterature. We findhm(0) ~ 0.026,
which is a shift of about 25% due to stepsize effects! On therdhand, switching on a chemical
potential has no effect on the Binder cumulant. As a prelarnyinresult we findi(am) /d(au)? ~ 0
within errors, which is consistent with the findings at fingespin [39] reported in the last section.

We have also mapped out the critical line for non-degenepadek masses, as shown in Fig 21,
both with the R-algorithm and the RHMC algorithm. In gendinalre is a significant step size effect.
The picture clearly puts the physical point, where Fodorl§att performed their simulations, on
the crossover side of the line. Note, that the physical geinery close to the critical line. This
is consistent with the requirement of finely tuned quark ms$s order to have a critical point at
moderate chemical potentials. (The calculatiorcpfn this case is still in progress. Taking our
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Figure 20: Left: Comparison of the Binder cumulant computed with theNREalgorithm (leftmost data)
and the zero stepsize extrapolation of the R-algorithmhRiBetermination ofn:(u) for 4 = 0,0.2 with
the RHMC algorithm. The arrow marks the result from the Reathm.
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Figure 21: The critical line separating first order from crossover fgr= 2+ 1. A significant shift is
observed when eliminating stepsize effects. The line pagsdose vicinity of the physical point (FK).

R-algorithm result; from the three flavour case, our resultipgwould be consistent with theirs
within errors). If the chiral limit of the two flavour theoryins out to be O(4), there is a tri-critical
point at some quark masg!/'® on thems-axis. Our results can be fitted with the corresponding
scaling equation and would then predidf® /To ~ 2.8.

8.4 A non-standard scenario for the phase diagram

Let us assess the consequences of the step size effects aititla point. After continuum
conversion the new result fon.(¢), now free of step size errors, is

me(H) M2
m_1—0.6(2)<ﬁ) . (8.5)

Note that the sign of the leading term has changed compartbe tarevious result! The reason is
that the first term in Eq. (8.4) now is consistent with zerothenegative second term dominates.
This means the critical mass gets smaller when apéalswitched on, and hence that the critical
surface in the phase diagram leans towards smaller quarkesiaSig. 22, i.e. the opposite of the
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Figure 22: Fordmy(p)/du? < 0, there is no critical point at all, the dotted line on thenhtigs merely a
crossover.

standard scenario Fig. 3 (right). In this case, the firstrorelgion in a plane of constaptis actually
shrinking for growingu. If the physical point is in the crossover regiontat 0, then switching
on a chemical potential will not lead to an intersection vitik critical surface, and hence there
would be no critical point or first order phase transition [Ht Idote that this scenario is perfectly
consistent with all the universality arguments summarisekction 1.1. TheT, 1) phase diagram
would then only have the transition line separating the sugelucting phase from nuclear matter,
as in Fig. 22.

8.5 Can one expect a critical end point apg <500 MeV?

Clearly, as the discussion of the systematics in the lasioseevealed, this last result is pre-
liminary as well, an important question being in which difec corrections go as the continuum
limit is approached. Nevertheless, based on the resulth®murvature of the critical surface,
one may obtain a rough estimate for the conditions requisdthte a critical endpoint in the phe-
nomenologically interesting regiqus <500 MeV. Irrespective of whether an eventual continuum
result forme(u) will have positive or negative curvature, as long as thefeoeftc; in Eq. (8.1) is
~ O(1) (its natural size; all known coefficients in the pressurd,[8&reening masses [27] and the
pseudo-critical temperature [6] are of that order), it iilepla very strong quark mass dependence
of the value ofu.. For instance, in order to hayge ~ 120 MeV as predicted by Fodor and Katz [8]
for N = 2+ 1, the quark mass has to obey the condition

1<— M <105 (8.6)
me(u =0) ~
i.e. it has to be fine-tuned to be within 5% of the critical duarass. Provided the coefficieot
does not change drastically in the casdef= 2+ 1, a similar situation will be encountered there
as well.

At this point it should become clear that we are still far franguantitative solution of the
problem of the critical endpoint. To achieve a resolutiotidrehan 5% in the quark masses would
even require to distinguish the up and down quarks. By centree have just discovered a 25%
systematic error in the critical quark mass due to step dfeets, and we have discussed earlier

016/25



The QCD phase diagram at zero and small baryon density Owe Philipsen

Potts, 723

12

10 first ofder transition

MIT
)
T

crpss-over

ol v

(W2

Figure 23: The critical heavy quark mass separating first order frorssweer as a function qf? [65].

the strong cut-off dependence (L00%) of the critical quark masses in physical units. Thus we
should expect formidable shifts pp. on the way to a reliable continuum result.

8.6 The heavy quark limit: Potts model

Other interesting projects are concerned with the uppét digrner of Fig. 3, i.e. the region
towards the quenched limit. Simulations of quenched QCDnitefbaryon number have been
done in [63]. As the quark mass goes to infinity, quarks camtegyiated out and QCD reduces to
a gauge theory of Polyakov lines. First simulations of thieory with Wilson valence quarks can
be found in [64]. At a second order phase transition, unaldysallows us to neglect the details
of gauge degrees of freedom, so the theory should be in thersality class of the 3d three-state
Potts model, which is the 3d Ising model. Hence, studyinghhee-state Potts model should teach
us about the behaviour of QCD in the neighbourhood of thécatitine separating the quenched
first order region from the crossover region. For lguiie sign problem in this theory was actually
solved by means of cluster algorithms recently [62].

Here | want to discuss an as yet unpublished result on sirootabf the three state Potts
model as presented in these proceedings [65]. For gmdll the sign problem of this theory is
mild enough so that brute force simulations at rgadre feasible. In the simulations presented
in [65], the change of the critical heavy quark mass is detegthas a function of real as well
as imaginaryu, as shown in Fig. 23. Note thM(u) rises with real chemical potential. i.e. the
first order region in Fig. 3 shrinks as finite baryon densitgudtched on. This system is thus
an example of the non-standard scenario discussed in th@psesections! Note also that the
gualitative behaviour in going from real to imaginguyis exactly as predicted in the schematic
picture Fig. 17 [6], and analytical continuation in deteming this critical line thus works.

9. Conclusions

The last couple of years have seen an enormous increasavitiegiconcerned with lattice
determinations of the QCD phase diagram in all of its intimgsegions and limits. While definite
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conclusions cannot yet been drawn, there is a lot of prognesfining the methods and studying
the systematics.

The longstanding question of the nature of the phase transit the two flavour theory in the
chiral limit is still open. But large volumes are now avallgband simulations o, = 6 lattices
will be undertaken soon. In combination with now availabtact algorithms these will hopefully
settle the issue in the near future.

There are now several groups that are tackling the criticdpeint. However, these investig-
ations are extremely difficult and still carried out over atser of theories and parameter values.
Within the R-algorithm, the critical endpoint from two-paneter reweighting is consistent with
the shape of the critical surface determined from imagircdugmical potential. However, the R-
algorithm in the regime of physical quark mass has been dstrated to be afflicted by strong
stepsize effects, which change the apparent order of treeghensition. Exact algorithms are now
being employed successfully, and this source of error wiisbe eliminated. An important qual-
itative conclusion is that the critical chemical potentiélthe endpoint is extremely quark mass
sensitive. A critical poinug <400 MeV requires the physical light quark masses to be less th
5% larger than the critical values at zero density. While guite possible that nature has arranged
for this, it is clear that under those circumstances a giaive determination is going to be a for-
midable task: any systemtic error in the current simulatisngoing to have enormous effects on
the location of the critical point. Recall that all calcidets reported here are on coarse lattices
with a ~ 0.3 fm, and in most works quark masses are only fixed in lattidesuriFurthermore,
finite volume and stepsize effects have been shown to berltige several 10%. Under those
circumstances it is still conceivable that there is no@ltpoint and phase transition at all. This
means working towards producing results in the thermodymamd continuum limits will be just
as exciting as the first qualitative calculations!

Acknowledgements:| am grateful to Philippe de Forcrand for valuable discussiand comments,
help with figures, and a continued enjoyable collaboration.
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