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We present a study of gauge invariant density-density correlators. Density-density correlators
probe hadron wave functions and thus can be used to study hadron deformation. Their zero
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compare the results to a previous analysis that did not employ the zero momentum projection.
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1. Introduction

The shape of hadrons is a fundamental property that depends on QCD dynamics. In particular,
determining the shape of the nucleon has been an open issue for decades and recently a number
of experiments have been performed in order to look for deformation in the nucleon system [1].
Lattice QCD provides a model independent method to study hadron deformation through hadron
wave functions and quark distributions. In this work we study hadron deformation by evaluating
density-density correlation functions [2]. In the non-relativistic limit they reduce to the wave func-
tion squared and being gauge invariant quantities are preferable to Bethe - Salpeter amplitudes.

2. Definitions and setup

The density-density correlation function for a meson is given by

C (~y, t1, t2) =
∫

d3x〈h|ρ f1 (~x+~y, t1)ρ f2 (~x, t2) |h〉 , (2.1)

where h represents a meson state and f1, f2 are flavor indices. It is shown schematically in Fig. 1.
The charge density operator in normal ordering is given by

ρ f (~x, t) =: q̄ f (~x, t)γ0q f (~x, t) : . (2.2)

In general, the corresponding baryon correlator has three density insertions on quark lines as shown
in Fig. 2, two of which can be on the same quark line as shown in Fig. 2b. Integrating the cor-
relator shown in Fig. 2a, over one relative coordinate reproduces, to a good approximation, the
density-density baryon correlator. The latter can be thought of as the square of the one-particle
wave function and depends only on one relative distance [3]. Therefore information about baryon
deformation is encoded in the one-particle wave function and can be extracted by studying the
density-density correlators described in Eq. (2.1) with h being the appropriate baryonic state. We
consider a maximum time separation between the source and the sink of T/2 where T denotes
the time extent of the lattice with anti-periodic boundary conditions in the temporal direction. An
optimal suppression of excited states can be achieved by choosing the density insertions to be at
a time separation of T/4 from the source and the sink [3]. Summation over the sink coordinates
projects to the zero momentum state. This requires knowledge of the all-to-all propagator, making
the computation a difficult numerical task.

ρu (~x,T/4)

ρd (~x+~y,T/4)

0T/2

Figure 1: The density-density cor-
relator for the meson. T is the tem-
poral length of the lattice used.

(a)

T/2 0

(b)

T/2 0

Figure 2: The density-density correlator for the baryon. The
symbol (×) denotes the density insertion.

There are two ways to address this problem:
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a) As a first approach to the problem one could neglect the summation over the sink and en-
sure that the suppression of the non-zero momenta is obtained by the time separation T/4
[3]. In the non-relativistic limit where the center mass wave function factorizes as ei~P·~r the
correlators are independent of the total momentum, ~P.

b) One develops an efficient method to obtain the all-to-all propagator using stochastic noise
techniques. This enforces hadronic states with zero momentum. We will be referring to this
method as the stochastic method.

3. Density-density correlators without explicit zero momentum projection

We follow the method used in ref. [3] to calculate density-density correlators using point source
propagators on a 323×64 size lattice and compare with results obtained on a 163×32 size lattice [3]
to check for finite volume effects. Since we do not sum over the sink the zero momentum projection
is not carried out. For the lattice of size 323 × 64 we use 100 quenched configurations while for
the smaller lattice we use 220 quenched configurations both generated with the Wilson action at
β = 6.0. We consider a value of κ = 0.153 which gives a pion to rho mass ratio, mπ/mρ = 0.84. We
compute the density correlation function for the pion, the rho, the nucleon and the ∆. The results
shown in Figs. 3 and 4 show that finite volume effects are large near the edges of small lattice. A
careful study of deformation on the large lattice is underway and will be reported elsewhere.

Figure 3: The charge density distribution for the
pion and the rho mesons on lattices of size 163×

32 and 323 ×64.

Figure 4: The charge density distribution for
the nucleon and the ∆ baryons on lattices of size
163 ×32 and 323 ×64.

4. Density-density correlators with zero momentum projection

The stochastic propagator gives an estimate for the all-to-all propagator using noisy sources
[4]. The method assumes an ensemble of independently created noise vectors with spin, color and
space components randomly selected so that they obey the conditions:

〈

ηa
µ (x)ηb†

ν (y)
〉

= δ (x− y)δµν δab
〈

ηa
µ (x)

〉

= 0. (4.1)

By solving the linear equation for each of the r noise vectors in the ensemble we find:

ηa
µ (x)r = Mab

µν (y,x)ψb
ν (x)r ⇒

(

M−1 (x,y)
)ab

νµ ηa
µ (y)r = ψb

ν (x)r (4.2)

030 / 3



P
o
S
(
L
A
T
2
0
0
5
)
0
3
0

Density-density correlators using all-to-all propagators Giannis Koutsou

The all-to-all propagator can be constructed by taking the ensemble average of the product between
the solution vector and the noise source:

〈

ψb
ν(x)ηa†

µ (y)
〉

=
(

M−1(x,z)
)bc

νλ
〈

ηc
λ (z)ηa†

µ (y)
〉

=
(

M−1(x,y)
)ba

νµ . (4.3)

For the evaluation of density-density correlators we only need the spatial all-to-all propagator since
the sink and density insertions are at fixed time slices. Whether we can in practice apply stochastic
noise techniques to this problem depends upon how many noise vectors are needed to achieve
convergence. We test the method by considering the pion and the rho at β = 6.0 and κ = 0.153 on
a lattice of size 163 ×32. We find that the error on C(r) saturates for 30 noise vectors for the pion
and 50 for the rho. In Fig. 5 we show a representative case, namely C(r) evaluated at r/a = 6 for
the rho as a function of the number of stochastic noise vectors using 95 quenched configurations. In
this work we adopt the saturation of the error as the criterion for convergence. In Fig. 6 we compare
the results obtained with the stochastic method to those obtained without momentum projection for
the same number of configurations. We note that the statistical errors in both methods are the same
reflecting only gauge noise. The main difference seen in the projected zero momentum results is
that the rho becomes broader. Such an increase in the root mean square (r.m.s) radius of hadrons
goes in the right direction since typically the r.m.s radii were underestimated in previous evaluations
within this framework [3]. In Fig. 7 we show that the z− x and z− y asymmetry exhibited by the
rho with Jz = 0 remains.

Figure 5: The rho density-
density correlator versus the
number of noise vectors. The
red point (box) has been com-
puted using dilution.

Figure 6: The charge density
distribution of the rho meson
computed with no zero momen-
tum projection (red squares) and
with the stochastic method (blue
crosses).

Figure 7: The charge density
distribution of the rho meson
along the x, y and z axes sep-
arately. The lines joining the
points are to guide the eye.

4.1 Stochastic method with dilution

We use a variant of the stochastic method which dilutes the noise vectors along the z-axis, i.e.
each noise vector only has non-zero values on a chosen z-slice. This means that for our lattices
at least 16 inversions are required for each configuration. The method has been used in ref. [5]
where the dilution is carried out on the time-axis. As we already noted, in our case the stochastic
propagator is only needed on two fixed time slices on which we took independent noise vectors.
Comparing in Fig. 5 the density correlator for the rho with and without dilution using the same
number of noise vectors i.e. 16 noise vectors we find consistent results. Implementing dilution in
the z-direction does not produce significant improvement and therefore we will not use it in what
follows.
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4.2 Sequential stochastic method

Instead of using two sets of noise vectors, one at T/4, the other at T/2, one can employ
a sequential method, where the all-to-all propagator with the noisy source at T/4 is used as the
source for a second inversion. Since we discard the noise at T/2 we expect that the stochastic noise
will be reduced. Again we test this method for Wilson fermions at β = 6.0 in the quenched theory
taking κ = 0.153 on a 163 ×32 lattice.

The density-density correlator we compute takes the form:

C (~y) = −∑
~x,~z

Tr
[

Su (~z−~x)γ0Su (~x)Γγ5S†
d (~x+~y)γ5γ0Sd (~x+~y−~z)Γ

]

(4.4)

where Γ = γ5 for the pion and Γ = γk for the rho (k = 1,2,3). By writing the all-to-all propagator
as the product between the solution and noise vectors, we obtain

C (~y) = −
1
Nr

∑
~x,~z,r

Tr
[

γ0Su (~x)Γγ5S†
d (~x+~y)γ5γ0Sd (~x+~y−~z)Γψr (~z)η†

r (~x)
]

(4.5)

where the summation over the z coordinate can be simultaneously carried out by solving the equa-
tion:

υr (~x+~y) = ∑
~z

M−1 (~x+~y,~z)Γψr (~z) (4.6)

As can be seen in Fig. 8 the sequential stochastic method converges when using 30 noise vec-
tors per gauge field for the rho meson as compared to 50 needed when two stochastic propagators
are computed. This results in a 40% CPU time gain. The rho correlation function using the two
methods are compared in Fig. 9 confirming that the results obtained with about half the noise esti-
mators in the sequential stochastic approach are consistent with those obtained using two stochastic
propagators.

Figure 8: The density-density
correlator at r/a = 6 versus
the number of noise vectors
needed for convergence when
two stochastic propagators are
computed (blue crosses) and
when the sequential stochastic
method (red squares) is used.

Figure 9: The charge den-
sity distribution of the rho me-
son using the stochastic method
(blue crosses) and the sequential
stochastic method (red squares).

Figure 10: C(x,0,0), C(0,y,0)

and C(0,0,z) in full QCD at
κ = 0.1570 using 195 un-
quenched gauge fields (Symbols
are shifted for clarity).
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5. Unquenched results

Having tested the sequential stochastic method in the quenched theory we evaluate the meson
correlators using unquenched SESAM gauge configurations on a lattice of size 163 ×32. The rho
asymmetry is shown in Fig. 10 for 195 configurations at β = 5.6 and κ = 0.1570, which gives
mπ/mρ = 0.76. We use spin, color and even-odd diluted noise vectors [5]. We find convergence
with 2 sets of noise vectors, i.e. with a total of (4×3×2)× 2 = 48 inversions per gauge field.
Wuppertal smearing is applied at the sink. Furthermore the point source propagators are calculated
on 9 sites to improve statistics. The unquenched results show a clear asymmetry in the rho which
is larger than what is observed in the quenched case at somewhat heavier pion mass.

6. Conclusions

We have explored the application of stochastic methods in the evaluation of density-density
correlators. The all-to-all propagators are needed to project out zero momentum hadronic states.
Using the all-to-all propagators obtained with the standard stochastic technique at two fixed time
slices the pion and rho correlators are computed to a good accuracy. They yield errors comparable
to the evaluation of these correlators using point-to-all propagators without zero momentum pro-
jection. Employing sequential all-to-all propagators reduces the cost by 40%. This also reduces
memory requirements which is an important issue for the calculation of baryonic correlators. Using
unquenched SESAM configurations we clearly see that the rho is elongated along its spin axis. The
deformation observed increases as compared to the quenched case which confirms our previous
findings. Therefore it is an interesting question to see whether the ∆ will develop a deformation
in the unquenched theory at smaller quark masses. Work is in progress for the calculation of the
baryon density distributions using the stochastic techniques described here.
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