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1. Introduction

For some years, the static QCD potentigkp(r) has been successfully computed in lattice
simulations. For instance, the distarrcef the potential computed in some of most recent lattice
computations in the quenched approximation ranges frorataba fm to beyond 2 fm. Computed
results by different groups, when superimposed with one¢h@nocome more or less on a single
curve with fairly good accuracy, showing very good stapitif the lattice predictions (see Fig. 1(a)
below). In particular, they show that numerically the QChOepdial tends to a linear potential
smoothly at large distances, in accord with the confinemiente of the quarks.

In this paper, we analyze the potential in the distance regioich is smaller than (but not too
small as compared to) the typical hadron sda&D. More specifically, we consider the region
0.1 fm <r < 0.5-1 fm if expressed in physical units. This is the region thatlevant to spec-
troscopy of the heavy quarkonia, such as bottomonium anargydum. In this region, it is known
empirically that the static potential can be approximatedl sy a Coulomb + linear form.

In this distance range, accuracy of the perturbative ptiedis for the static potential improved
drastically around year 1998 [1]. It was proposed to subtiRaenormalon contained in the
independent (constant) part of the potential, e.g. by cdimguhe total energy Byoe + Vocp(r)
after reexpressingole in terms of theMS mass or by computing the force. Then, we find dramatic
improvement in convergence of the perturbative series,edlsas much more stable perturbative
predictions against scale variation. Moreover, once weainlkinuch more accurate predictions,
good agreement with phenomenological potentials and &iticé computations of the potential
has been observed in the distance randef® < r < 0.5 fm; by now, this has been confirmed by
several groups [2, 3, 4].

In this article we review our recent work [5], in which we aym# the QCD potential in the
framework of operator-product expansion (OPE) [6]. We madde most recent developments of
the perturbative predictions and lattice computationsing ©PE, one can separate perturbative
contributions from non-perturbative contributions in arambiguous manner. In this way, we are
able to determine (1) the size of non-perturbative contivins to the potential, and (2) the relation
between/\y;s and lattice scale (Sommer scale). In practical applicatitme latter determination
would be particularly important, since it can be used to meitge as(Mz) with high accuracy in
near future, when lattice simulations incorporating dyitainquarks with realistic masses will
become available.

2. OPE of the QCD potential

The OPE of the static QCD potential was developed around 3229 [6], within the frame-
work of potential-NRQCD effective field theory [7]. Concagtly it is close to OPEs of other
physical quantities, with which one may be more familiar. évhhere is a small parameter as
compared to the typical hadron size (in our case the distal{cef\aéD between static quark and
antiquark), one constructs a series of operators as anggpanr. Each operator has a Wilson co-
efficient, which is perturbatively computable, whereas a-perturbative contribution is contained
in the matrix element of the operator. The OPE of the QCD p@tkreads

Vaen(r) = Vs(r) + 0Eys(r) (2.1)
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with
SEyus O as / dt etV =Vs} (0| 7. EA(t) ¢ (t,0)anT- EP(0) |0) + &/(rP). (2.2)
0

Here,Vs(r) denotes the Wilson coefficient corresponding to the leadiNgcontribution to
the potential (whose operator is the identity operatov}(r) is referred to as “singlet poten-
tial,” is perturbatively computable, and has a Coulombibdsor (with logarithmic corrections)
~ —1/|rlogr| at short-distances. We note thaj(r) is different from the perturbative expansion
of Vocp(r); all IR contributions (IR divergences and IR renormalonayénbeen subtracted and
absorbed into a non-perturbative contribution, so thaptrurbative expansion &f(r) is more
convergent than that &gcp(r). See [5] for the precise definition WE(r).

On the other handdEys(r) denotes the leading non-perturbative contribution. Itivery as
an integral over time of an operator matrix element. The ajoeris local in space but non-local
in time. The behavior 0dEys(r) at small-distances is known exactly to ﬁéA‘éCDr:*) whenr is
very small (wherVpo — Vs = Caas/r > Aqcp holds). It is, however, doubious whether this strong
condition is met in the distance region of our interest, fn S r < 1 fm. In this distance region,
where it is more likely tha¥o — Vs ~ Agcp, the behavior oBEys(r) cannot be predicted model-
independently. According to some models it is estimatedetaﬁ’tY\gCDrz). In any case, in the
following analysis, we will use only the fact thaEys(r) — 0 asr — 0, which is true because at
very small distance8Eys(r) = &(A4cpr?).

Intuitively one can interpret in the following way. It is tfentributions of gluons, whose
wavelengths are smaller thanthat generates the Coulomb singularity of the potential as0.
On the other hand, non-perturbative contributions can g&rded as contributions of gluons whose
wavelengths are larger thanSuch gluons see only the total charge of the system, hesce;d,
they decouple from the color-singlet system. Thereforay tontributions vanish as— 0.

3. Comparison of Vs(r) and recent lattice computations

In order to make a numerical cross chek of the prediction of Ofe first compare the per-
turbative predictions of the leading Wilson coeffici&fatr) and recent lattice results. In Fig. 1(a)
we plot lattice data of the QCD potential from three differgroups [3, 8]. In the same figure, the
perturbative predictions dfs(r) are plotted up to the next-to-next-to-next-to-leadingaldmic
order (NNNLL). As a salient feature, we see that the pertibgredictions follow the lattice data
up to larger distances as we increase the order.

Following input parameters were chosen in depicting thigrég First, we note that in order
to make a comparison betwe¥g(r) and lattice data, the relation betwedfjs and lattice scale
(we take the Sommer scalg) is needed. This is because, a priori each lattice data gatdan in
units ofrg, whereas perturbative predictions are given in unitdgé. Thus, conversion of units
is needed to compare them in common units. Here, only in #d8an, we use the central value
of the conventionally known relatiarg /\f’v%Op = 0.602+ 0.048 [9]. Other inputs areas(Q) = 0.2,

n = 0; at NNNLL, the 3-loop non-logarithmic terag is not known yet, only some estimates exist,
hence, we used Pineda’s estimatedgf4] and varied it within a range including other estimates
as a part of our estimates of uncertainties; we chose C+Lnselire computing/s(r).
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Figure 1: (a) Comparison of the Wilson coefficiewg(r) and lattice data. (BYjaw(r) —Vs(r) vs.r. We set
ro/\e” = 0.602 only in these figures.

To verify the prediction of OPE, a closer inspection is needeata points in Fig. 1(b) show
the differences o¥/s(r) and the lattice data [3], where the vertical scale is magh#éi® compared
to Fig. 1(a). At LL, one can still see a Coulombic contributio the difference, but as the order
is increased, a Coulombic contribution vanishes and theg te be regular at the origin. Solid
lines in the same figure show fits of the data points by cubigrpmhials, using data points at
r/\%’p < 0.5. One sees that the solid lines approximate the data pgints larger distances as
the order increases, which indicate that these data poéutsre regular around the origin as the
order increases. These features support the OPE predlittimirthe non-perturbative contribution
OEys(r) vanishes as — 0. We note that such behavior can be observed only when wethiake
difference betweeYis(r) and the high quality lattice data, since in Fig. 1(a), pdyative predictions
become so steep toward the origin that any steep curve temgsthrough the lattice data points.

4. Determination of SEys(r) and roAe”

In the light of the observation in the previous section, wgfgren a simultaneous fit to de-
termine the non-perturbative contributidieys(r) and the relation between lattice scale #@ggk,
X= ro/\%’p. (In the previous section we chose a specific valuexfdetermined from another
source, but in this section we determine its value using t8®Qotential alone.)

Let us explain why we have a high sensitivity to the value.oft constitutes the essence of
our analysis in this article. We compare the lattice datdiferpotential and perturbative prediciton
of Vs(r) in somecommon units. Here, we choose to compare in units'gfs, hence we convert the
lattice data into these units by using any chosen value-of /\fv%"”. Let us write

Viatt(r;X) —Vs(r) = Mar(r; Xrue) — Vs(r)] + Mart(r;X) — Viaw(r; Xirue)]- (4.1)
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Figure 2: Allowed regions in the parameter spa@g,Az) at 68% and 95% CL, wheWa(r;x) — Vs(r) is
fitted by As - AZr + Ag- A3 r2.

It is a trivial equality, where, e denotes the true value ®f The first bracket..] on the right-hand-
side coincides with the non-perturbative contributd,s(r), hence it vanishes as— 0. On the
other hand, the second bracket on the right-hand-side @ak€sulomb”+linear form as long as
X # Xrue. (Here, “Coulomb” includes logarithmic corrections at ghdistances.) It follows from
the fact thaMan(r; x) takes a “Coulomb”+linear form and th@liax(r; X) — Viaw(r; Xeue)| 1S merely
the difference of these functions after rescalfig(r;x) in the vertical and horizontal directions.
Hence, the second term contains a Coulombic singularity-a€0 unlessx = Xyue. It means that
in order to find the true value of, we should adjusk such that the leading Coulombic behavior
vanishes inviai(r; X) — Vs(r) asr — 0. That the fit is determined by the leading singular behavior
guarantees a high sensitivity xo

As for dEys(r), we simply fit it by a quadratic polynomial using the data m@'mtr/\%’p < 0.5,
sincedEys(r) is regular ag — 0.

We show the results of the fit fabEys(r) in Fig. 2. The central value of the coefficient
of the linear potential is about 1 in units ()f\f\%"”)z. We note that the coefficient of the linear
potential (string tension) determined from the large distabehavior of lattice results is about 3.8
in the same units. Hence, our result (central value) inditizt the non-perturbative contribution
contains only about one quarter of the string tension, asraooent of the linear potential in the
short-distance region. Three quarters of the string tensédongs to the perturbative contribution
Vs(r). The present error is somewhat large, so it is still consist 95% confidence level that
eitherall of the string tension is containedVi(r) or only 1/3 of it is contained iWs(r).

Another notable feature is that (in the schemes which we sehdEys(r) = 0 is strongly
disfavored. It is seen from Fig. 2, where the origin is exeldidrom the allowed region. It means
that there is a non-vanishing non-perturbative contrdsutiln fact, this is a new result, since in
a previous similar study by Pineda [4JEys(r) contained a larger error and was still consistent
with zero. The major difference of the analyses, which leth&oimprovement of the bound in our
analysis, is that we determinedimultaneously from the fit.

We also obtained

X = 0.574-+ 0.042 (4.2)

Lwe also tried a cubic fit, where the results of the fit did notgeaconsiderably.
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It should be compared with the conventional values detezxthiny the Schrodinger functional
method:

x=0.602+0.048 [9] (4.3)
x=0.586+0.048 [3] (4.4)

The errors are of the same order of magnitude, and the vatae®asistent with one another with
respect to the errors. We emphasize that our determinasiesm aicompletely independent method,
and that the mutual consistency between these values esmuittrivial. At the moment, the error
of ourxin eq. (4.2) is dominated by errors of the lattice data of thieptial.

5. Conclusions

We analyzed the static QCD potential in the distance regibfird < r < 1 fm. We combined
the perturbative predictions up to NNNLL and the most adeuidtice computations, in the frame-
work of OPE. In this way, we determined the non-perturbatiwetributiondEys(r) andro/\%’p,
for n = 0 (quenched approximation). Our conclusions are as follows

e Most of the linear potential at< 1 fm (~ 3.8 /\fTSr) is included in perturbative prediction
of the Wilson coefficienVs(r). This is ascheme-independent result?

e OEys(r) = 0 is disfavored. This is a scheme-dependent result, butlishio different
schemes which we examined (which we consider to be reasoaabémes).

o roA%’p = 0.57440.042. It is consistent with the conventional values and theras of
comparable size. This provides a new method for its detextioin.
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