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1. Disconnected tmLQCD Calculations

Twisted mass fermions have great potential in extending lattice QCD calculations to smaller
quark masses. It is essentially a chiral-flavor rotation of the mass term in the Wilson action for a
quark doublet. It does not suffer from the quenched “exceptional configuration" problem because
of the suppression of unphysical small quark mass eigenvalues[1]. In addition, O(a) improvement
is often automatic in many quantities[2]. Although twisted mass fermions are beginning to be used
in phenomenological studies[3], their use in the context of lattice disconnected loop calculations
is still in the initial stages. Our goal is to make realistic calculations of experimental observables,
especially nucleon strange form factors. Previously, we have used Wilson fermions in our discon-
nected calculations[4]. The improved behavior of small quark eigenvalues in the twisted formula-
tion changes our previous computational strategy considerably. We will discuss our computational
approach below, after a brief review of the current experimental situation on strange form factors.

2. Experiments on Strange Quark Form Factors

The current experimental situation on low momentum transfer measurements of nucleon strange
form factors from HAPPEX[5], A4[6], SAMPLE[7] is nicely summarized in Fig. 1 below, taken
from the second paper in Ref.[5]. (Additional experimental measurements are also underway[8].)
It shows a simultaneous plot of the bands in GE(q2), GM(q2) picked out by various linear combi-
nations measured. These measurements are deduced from parity-violating asymmetry experiments
done in elastic electron-proton scattering. The 95% confidence region of these 4 experiments is
indicated by the oval, giving small GE , positive GM values. Two lattice results are indicated on the
figure, listed as references 21 and 22. The reference 21 result[4] came from fitting our quenched
lattice data with two chiral perturbation theory models; a “no η ′" model, and a “maximal η ′"
model. The “no η ′" model is more realistic, and predicts small, positive GE , GM values, in appar-
ent agreement with experiment. Although our lattice results agree with experiment, it is clear that
we must simulate at smaller quark masses to connect more confidently to the chiral models. Thus,
we turn to the twisted mass formulation, which promises a deeper penetration of the chiral region.

3. Twisted Mass Eigenvalues

An illustrative eigenvalue spectrum, where we zoom in on the eigenvalues near the origin, on a
small 83

×16 lattice with β = 6.0 is shown in Fig. 2. These are actually harmonic Ritz values of the
eigenvalue spectrum of the preconditioned even/odd matrix, run at κ = 0.1567,µ = 0.03, which
corresponds to maximal twist as determined in Ref.[9]. The harmonic Ritz values are approximate
eigenvalues. The spectrum has essentially no small eigenvalues. This is in the context of the
spectrum of harmonic Ritz values (a total of 140 shown) seen in Fig. 3 extending from -25 to 25
on the imaginary axis, and from 0 to 50 on the real axis. Also, one sees a symmetric pairing of
up/down quark eigenvalues as one reflects across the real axis. We see these same phenomena
occuring on larger lattices.
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Figure 1: The experimental situation for the simultaneous measurement of the strange electric and magnetic
form factors at small four-momentum transfer. Figure taken from the second paper in Ref. 5

Figure 2: A selection near the origin of the even/odd preconditioned twisted mass quark eigenvalues of a
small 83

×16 lattice.
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Figure 3: An illustration of the full set of even/odd preconditioned twisted mass quark eigenvalues on a
small 83

×16 lattice.

4. tmLQCD and Perturbative Subtraction

The basic method we use to extract the subtle signals in the lattice simulation of disconnected
quantities is stochastic noise projection. That is, we invert the tmWilson matrix with Z(2) noise
vectors placed at every color, Dirac, and space-time position. Within this context, one of the crucial
techniques we previously used in our Wilson disconnected diagram evaluations was perturbative
subtraction. The perturbative evaluation of Wilson matrix elements mimics the iterative numerical
evaluation, and allows a subtraction of the noise from Z(2) source noise vectors. This allows a
better signal to be extracted for a given number of input noise vectors, and can be used as long as
one restores the perturbative signal extracted along with the noise. We tested perturbative subtrac-
tion on tmLQCD on a 203

×32 lattice with κ = 0.1567,µ = 0.03 (about the strange quark mass).
Fig. 4 shows the zero momentum time sliced disconnected signal for the imaginary part of the third
component of the conserved vector current, J3(t), for the first 16 time positions in the lattice. We
found that the method has very little effect on the extracted signal. We ran 50 noise loops for this
quantity on a single configuration. The Liverpool/Münster/Zeuthen/Hamburg/Berlin group claims
a better result with Gaussian noise[10]. We will soon explore this option as well.

5. Prototype Scalar Disconnected Calculation

In order to investigate the issues arising in extracting disconnected signals in this new context,
we have performed a small simulation on a 203

×32 lattice, at κ = 0.1567,µ = 0.03, with twisted
mass fermions. We use unimproved Wilson gauge fields and periodic spatial, Dirichlet time bound-
ary conditions on the fermion fields. In addition, we ran deflated GMRES-DR(40,10)[11] (the
Krylov subspace is 40, the number of deflated eigenvectors is 10.), which we find to be adequate
for our needs, and GMRES-Proj[12] to use the deflated eigenvectors in solving other right hand
sides. We have studied in particular the zero momentum scalar matrix element, S =< ψ̄ψ >, in the
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Figure 4: Illustration of the effect of perturbative subtraction on the real part of the J3 twisted mass current
loops for time positions 1 through 16 on a 203

×32 lattice. "Zero" means without subtraction, "first" means
subtracted to order κ4 in the perturbative series. Corresponding data points displaced slightly.

Figure 5: The blue bursts and associated error bars represent an analysis using Eq. (5.3) on 135 configura-
tions. The red triangles and error bars are from a similar analysis, using a loop background of 20 time steps,
corresponding to a fixed time upper limit in Eq. (5.3).

presence of a nucleon. The quantity that we form is

RN(t, t ′) =
G3

N(t, t ′)

G2
N(t)

, (5.1)

where G3
N(t, t ′) is the three-point function for the zero momentum scalar insertion, and G2

N(t) is the
two-point function for the unpolarized nucleon. The three point function is formed as

G3
N(t, t ′) =< G2

N(t)S(t ′) > − < G2
N(t) >< S(t ′) >, (5.2)
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where < .. . > denotes a gauge field average and S(t ′) is the raw disconnected scalar loop (we have
not applied a renormalization factor). We compute the quantity,

RN(t) =
t

∑
t ′=source

RN(t, t ′) −→ const +Gdis
S (0), (5.3)

which gives the disconnected part of the scalar form factor, Gdis
S (0), at zero momentum. Our

results (“analysis 1") for this quantity on 135 configurations with a single noise per configuration
are shown in Fig. 5. We use a zero-momentum nucleon wall source at time step 4 for the two
point function. We do not attempt perturbative subtraction because of our finding, in the previous
section, that this helps little. The quantity RN(t) is plotted as a function of the final nucleon and
scalar loop position, t. In addition, we show another analysis (“analysis 2") in which the upper limit
in Eq.(5.3) is not t, but fixed at 20 background time steps. We are looking for a linear signal in t;
the first analysis yields smaller error bars. The value yielded by the 10-13 time step fit is Gdis

S (0) ≈

1.1± 1.3. Although our error bar is large, the sign and magnitude of our result is consistent with
expectations[4].
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