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1. Introduction

The importance of preserving chiral symmetry on the lattice and the advantages of domain-
wall [1, 2] and overlap [3, 4, 5] fermions are well recognized, but these advantages come at a heavy
computational cost. It is therefore necessary to subject these formulations to the test of simulations
on lattices of realistically large size in order to explore the adequacy of available numerical tech-
niques and verify the benefits expected to follow from the preservation of chiral symmetry. In this
contribution we present the results of one such investigation with the overlap Dirac operator.

Quenched gauge configurations were generated with the Wilson gauge action at β = 6 on a
lattice of size 183 × 64, as well as at β = 5.85 on a 143 × 48 lattice in order to test scaling. The
corresponding values of the lattice spacing are a−1 = 2.12 GeV and a−1 = 1.61 GeV, on the basis
of the Sommer scale defined by r2

0F(r0) = 1.65, r0 = 0.5 fm [6]. The two lattices are therefore of
approximately the same physical volume. For 100 configurations at each of the two lattice sizes,
overlap quark propagators were calculated for a single point source and all color-spin combinations
using a conjugate gradient multimass solver, after gauge-fixing to the Landau gauge. Propagators
were calculated for quark masses amq = 0.03,0.04,0.06,0.08,0.1,0.25,0.75 on the 183×64 lattice
and amq = 0.03,0.04,0.053,0.08,0.106,0.132,0.33,0.66,0.99 on the coarser 143 ×48 lattice.

Implementation of the overlap operator requires the calculation of H/
√

H†H where H =

γ5(DW −ρ/a), and DW is the Wilson Dirac operator. This was accomplished using a Zolotarev op-
timal rational function approximation with 12 poles for the first 55 configurations on the 183 ×64
lattice. A Chebyshev polynomial approximation was used for all remaining configurations after it
was found to be about 20 percent more efficient. In both cases, the lowest (12 for 18× 64, 40 for
143 × 48) eigenvectors of H2 were first computed with a Ritz algorithm and projected out before
inverting the Dirac operator. As convergence criteria we required |1/

√
H2−∑Tn(H2)|< 10−8 and

|D†Dψ −χ| < 10−7. The parameter ρ in the definition of the overlap operator was chosen so as to
maximize locality and set to ρ = 1.4 at β = 6 and ρ = 1.6 at β = 5.85 [7, 8]. For further details
of the simulation, as well additional results and greater discussion of the results presented herein,
see [9].

In the sections that follow, we present results for the meson spectrum, meson final state wave
functions, the baryon spectrum, and quark and diquark propagators calculated in the Landau gauge.

2. Light meson observables

2.1 Pseudoscalar spectrum and quenched chiral logarithms

In this and the following three sections, we present results obtained on the finer lattice at β = 6.
A comparison of the two lattices will follow in Section 2.5. We first consider meson correlation
functions constructed with point sources and sinks. The general zero-momentum meson correlator
is given by

GAB(t) = 〈∑
~x

Tr
[

S f2(0;~x, t)ΓAγ5 (S f1(0;~x, t))† γ5ΓB
]

〉 , (2.1)

where S fi(0;~x, t) is the Euclidean propagator for a quark of flavor fi, and ΓA and ΓB are the ap-
propriate γ-matrix combinations for the states of interest. To extract ground state meson masses,
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Figure 1: Pseudoscalar meson spectrum for both
point and extended sinks.
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Figure 2: Chiral fit of pseudoscalar meson masses.

correlators were fit to the usual functional form

G(t) =
Z
M

e−MT/2 cosh
[

M
(

T
2
− t

)]

, (2.2)

where M is the meson mass, T is the extent of the lattice in time, and we refer to Z as the corre-
lator matrix element. Fits were performed within specified windows tmin ≤ t ≤ 32a, which were
determined by effective mass estimates and by scanning candidate values of tmin to find the smallest
value (consistent with the errors) before the clear effect of higher states caused the mass prediction
to rise. Errors in the meson masses were estimated with the bootstrap method with 300 samples.

We plot in Fig. 1 our results for the pseudoscalar spectrum for all possible input quark mass
combinations. The figure also includes results for correlators with extended sinks, which will
be discussed in the next section. In the quenched approximation at finite volume, the correlator
GPP(t) receives contributions proportional to 1/m2 and 1/m from chiral zero modes that are not
suppressed by the fermionic determinant. These may be eliminated by considering the difference
of pseudoscalar and scalar meson correlators GPP−SS(t) = GPP(t)−GSS(t), since the quenching
artifacts cancel by chirality in the difference [10]. On our large lattice no significant differences
between the results obtained with PP and PP−SS correlators were observed. Except where noted,
we therefore make use of PP correlators in the remainder of this section.

Neglecting for the moment chiral logarithms, we fit the pseudoscalar correlators to the linear
form

(aMP)2 = A +B(am) , (2.3)

for quark masses am ≤ 0.1. This yields A = 0.0058(15), B = 1.376(15) for the PP correlator and
A = 0.0059(16), B = 1.380(17) for the PP−SS correlator. The nonzero value of the intercept A

is statistically significant, and the PP−SS result confirms that it is not attributable to zero modes.
The deviation from linear behavior must therefore be due either to finite volume effects or to chiral
logarithms. Regarding finite volume effects, we can note that the Compton wavelength of our
lightest pseudoscalar, M−1

P ≈ 4.5a, is much smaller than the lattice size L = 18a (MPL = 4).
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Figure 3: Evidence for quenched chiral logs.

We proceed to test the supposition of quenched chiral logs, and fit the degenerate quark mass
results for the pseudoscalar masses to the expression [11]

(aMP)2 = A(am)1/(1+δ ) +B(am)2 , (2.4)

where the leading quenched logarithms have been resummed into a power behavior, and the term
proportional to B parameterizes possible higher-order corrections in the mass expansion. The re-
sulting fit is shown in Fig. 3, plotted in terms of the ratio (aMP)2/am, which exhibits a sharp rise
at small m. This yields A = 0.680(68), B = 2.98(31), δ = 0.29(5), consistent with values of δ
presented elsewhere in the literature.

2.2 Extended sinks and vector meson spectrum

For some correlation functions, such as the vector VV correlators, signals may be greatly im-
proved by the use of extended sources and sinks. As a practical constraint, we were forced to
generate quark propagators for point sources, as these were required for the study of nonperturba-
tive renormalization and the evaluation of selected matrix elements. We were free to take advantage
of extended sinks, however, which were constructed for PP and VV correlators as follows.

In the Landau gauge, we define a correlation function dependent on the separation r between
the quark and antiquark at the sink [12] by

G(r, t) = ∑
~x,~y

{

Tr
[

S f2(0;~x, t)ΓAγ5 (S f1(0;~y, t))† γ5ΓB
]

δ (|~x−~y|− r)
}

. (2.5)

In calculating this function, a fast Fourier transform was used to reduce the double summation over
spatial lattice sites to a single sum, decreasing the computational time by almost three orders of
magnitude [13]. Figure 4 shows the mean value of the G(r, t) correlators for pseudoscalar mesons
with quark mass am = 0.03, each normalized to unity at r = 0. A clear ground state “wave function”
is apparent after about t/a = 8. For both the PP and VV correlators, we used the corresponding
functions ϕ(r) ≡ G(r,8a) to define extended sink correlators

Gext(t) = ∑
r

ϕ(r)G(r, t) , (2.6)
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Figure 4: PP extended sink correlators G(r, t) at
various t for am1 = am2 = 0.03.
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Figure 5: Vector meson spectrum for am ≤ 0.1.

from which we then extracted the meson masses.
The use of extended sinks was most valuable in the calculation of the vector meson spectrum.

The point sink and extended sink vector meson spectra are compared in Fig. 5 for small quark
masses am≤ 0.1. A linear fit of the extended sink data gives aMV = 0.409(15)+1.10(13)(am). We
note that the chiral limit value of 0.409(15) is larger than the value 0.366 obtained using the lattice
spacing as determined by the Sommer scale and the experimental ρ mass, giving an indication of
the systematic error induced by the quenched approximation.

2.3 Axial Ward identity and ZA

Exact chiral symmetry implies a conserved axial current, and the associated axial Ward identity
(AWI) predicts a constant value for the ratio

ρ(t) =
G∇0A0P(t)

GPP(t)
. (2.7)

The conserved axial current is a local, but not ultralocal, operator. The ultralocal axial current

A0 = ψ̄1(x)γ0γ5

[

(1− a
2ρ

D)ψ2

]

(x) (2.8)

differs from the exactly conserved axial current by a finite renormalization factor ZA and possible
corrections O(a2). We calculated the correlator in Eq. (2.7) with the current of Eq. (2.8) and using
the lattice central difference for ∇0, corrected so as to take into account the sinh behavior of the
correlator. Figure 6 shows the observation of plateaus for all available quark masses in the range
8 ≤ t/a ≤ 56.

The fit shown in Fig. 7 to

aρ = A +2(am)/ZA +C (am)2 (2.9)

gives A = 0.00002(10), ZA = 1.5555(47), C = 0.273(32). The fact that A is consistent with
zero is an excellent indication of the good chiral behavior of the overlap formulation (compared to
the residual mass found in domain-wall fermion calculations). We also note that C is rather small,
possibly indicating that discretization errors might be smaller than expected on the basis of purely
dimensional arguments.
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Figure 6: AWI ratio as a function of time for all
degenerate quark mass combinations.
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Figure 7: Axial Ward identity fit.

2.4 Quark masses and chiral condensate

Using our data for the pseudoscalar spectrum together with the experimental value for the kaon
mass rescaled by the lattice spacing as determined from the Sommer scale, we find a(ms + m̂) =

0.0709(17) for the sum of the strange and light bare quark masses. A given bare quark mass m(a)

is related to the renormalized quark mass m̄(µ) by

m̄(µ) = lim
a→0

Zm(aµ)m(a) . (2.10)

The mass renormalization constant Zm is in turn related to the renormalization constant ZS for
the non-singlet scalar density by Zm(aµ) = 1/ZS(aµ). We calculated ZS in the RI-MOM scheme
starting from the identity

ZRI
S (aµ) = lim

m→0
ZA

ΓA(p,m)

ΓS(p,m)

∣

∣

∣

∣

p2=µ2
, (2.11)

where ΓA(p,m) and ΓS(p,m) are suitably defined quark two-point functions for the axial cur-
rent and the scalar density in the Landau gauge, and ZA is the renormalization constant for the
axial current calculated in the previous section. Details of the procedure will be presented in
a forthcoming publication. From it we find ZRI

S (2GeV) = 1.195(9)(27), where the first error
is statistical and the second systematic. With this result, one can use the three-loop perturba-
tive calculation of the ratio ZMS

S /ZRI
S [14] to calculate ZMS

S (2GeV) = 1.399(10)(32). Using this
value, we find (ms + m̂)MS(2GeV) = 107(4)(2) MeV for the sum of strange and light quark
masses. Finally, using the value ms/m̂ = 24.4(1.5) from chiral perturbation theory [15], we ob-
tain mMS

s (2GeV) = 103(4)(2) MeV for the strange quark mass.
We have also calculated the chiral condensate by performing a fit to the mass dependence of

the quantity
−a3χ̃(m) = am∑

x
(〈P(x)Pc(0)〉−〈S(x)Sc(0)〉) , (2.12)

where the superscript c denotes interchange of the two quark flavors. A quadratic fit gives −a3χ =

0.00131(8) for the value at zero quark mass, yielding 〈ψ̄ψ〉MS(2GeV) =−0.0175(11)(6)GeV3 =

−[260(6)(8)MeV]3.
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Figure 8: Pseudoscalar PP spectrum comparison.
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Figure 9: Vector (extended sink) spectrum compar-
ison.

Quantity β = 6 β = 5.85

ZA 1.5555(47) 1.4432(50)
δ (degenerate) 0.29(5) 0.17(4)
a−1 (Sommer) [6] 2.12 GeV 1.61 GeV
a−1 (physical planes) 2.19(6) GeV 1.44(4) GeV
a−1 (Mρ ) 1.90(4) GeV 1.28(6) GeV
fK/ fπ 1.13(4) 1.09(4)
fK∗/ fρ 1.03(6) 1.03(10)
MK∗/Mρ 1.09(5) 1.08(6)
ZMS

S (2GeV) 1.399(10)(32) 1.290(14)(82)
(ms + m̂)MS(2GeV) 107(4)(2) MeV 117(2)(8) MeV
mMS

s (2GeV) 103(4)(2) MeV 112(2)(8) MeV
〈ψ̄ψ〉MS(2GeV) −[260(6)(8)MeV]3 −[288(5)(24)MeV]3

Table 1: Comparison of data for the two lattices.

2.5 Meson scaling

In Figs. 8 and 9, we compare our results for the pseudoscalar and vector spectra on the two
lattices, using the lattice spacing determined from the Sommer scale to express masses in physical
units. We neglect logarithmic effects in the lattice spacing and plot the mass spectra as a function of
bare quark mass. It is interesting to observe that our results for the mass spectra on the two different
lattices are very similar, a conclusion that would remain qualitatively unchanged in considering
renormalized quark masses. Our results suggest that scaling violations for these quantities may be
quite small.

Complete results for the coarser lattice may be found in [9], and we provide a direct compari-
son of selected quantities in Table 1.
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Figure 10: Λ-like octet masses at β = 6 for two
fitting windows and quark masses m1 = m2 degen-
erate.
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Figure 11: Decuplet masses at β = 6 for two fitting
windows and quark masses m1 = m2 degenerate.
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Figure 12: Chiral fit of baryon masses at β = 6 with
three light degenerate quarks.
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Figure 13: Comparison of baryon masses with light
degenerate quarks at two values of β .

3. Baryon spectra

Baryon correlation functions were constructed with point sources and sinks using standard in-
terpolating operators. Uncorrelated single-mass fits were performed within fitting windows chosen
on the basis of effective mass plots, and errors were estimated by bootstrap. For the results that
follow, baryon masses were calculated with two degenerate quarks having each of the five lightest
available masses (six on the 143 ×48 lattice) and for all available masses of the third quark.

The positive and negative-parity octet masses are plotted in Fig. 10 as a function of total quark
mass. Measurements for two values of tmin are shown in order to give some indication of the
dependence on fitting window. Decuplet spectra are plotted in Fig. 11.

In Fig. 12, we plot the masses of the positive-parity states for light degenerate quark masses
amq = 0.03,0.04,0.06,0.08,0.1. A linear extrapolation to the chiral limit gives aM8 = 0.559(24)

and aM10 = 0.690(32). In this limit, we find M8/Mρ = 1.367(77) and M10/M8 = 1.234(78).
Finally, we plot in Fig. 13 the JP = 1

2
+ and JP = 3

2
+ states for light degenerate quarks on

both lattices where bare masses have been rescaled by the corresponding values of a−1 set by the
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Sommer scale. At β = 5.85, we find aM8 = 0.739(28) and aM10 = 1.032(55) in the chiral limit,
yielding M8/Mρ = 1.222(61) and M10/M8 = 1.395(91). The octet spectrum exhibits good scaling
while the decuplet shows some indication of scaling violation. We note, however, that the decuplet
masses suffer from greater uncertainty in the choice of fitting window (estimated to be on the same
order as the statistical error), and so the apparent lack of scaling has limited significance.

4. Diquark correlations

The possible existence of exotic states such as the Θ+ pentaquark has given a renewed rel-
evance to diquark models [16]. A study of correlations among quarks in baryons is currently in
progress which might provide additional evidence for such models.

The fact that our propagators were calculated in the Landau gauge allows us also to measure
quark-quark correlations directly and to fit their decay in Euclidean time in terms of an effective
“diquark mass” [17]. Of course, such a mass parameter can only be defined in a fixed gauge and is
not the mass of a physical state. Nevertheless, it can give an indication of the relative strength of
quark bindings within diquark states. We consider correlation functions for the diquark operators

O
s1s2
c (x) = εcc1c2ψs1

c1
(x)ψ s2

c2
(x) (4.1)

and
O

s1s2
c1c2

(x) =
1√
2
(ψs1

c1
(x)ψ s2

c2
(x)+ψ s1

c2
(x)ψ s2

c1
(x)), (4.2)

which are a 3̄ and 6 of color, respectively. Using these operators, we form four types of diquark
states: (i) color 3̄, spin-0, flavor 3̄, (ii) color 3̄, spin-1, flavor 6, (iii) color 6, spin-0, flavor 6, and
(iv) color 6, spin-1, flavor 3̄.

We work in a basis where γ4 is diagonal, and so to extract the mass of a positive-parity
state, correlators involving upper components (Dirac indices 1, 2) are combined with time-reversed
lower-component correlators. Negative-parity states are constructed with one upper and one lower
component (e.g. 1, 3). Plotted in Fig. 14 are positive-parity diquark correlation functions for the 3̄
state with am1 = 0.03 and am2 = 0.03, the lightest available quark mass combination. For compar-
ison we also extract constituent quark masses by performing fits to the quark propagators. Plotted
in Fig. 15 is an example for amq = 0.03, giving the constituent quark mass aM = 0.229(5).

In Figs. 16 and 17 we plot the positive and negative-parity diquark spectra, as determined from
fits between tmin = 5a and tmax = 15a. Also included are plots of twice the constituent quark mass
and extrapolations to the chiral limit for these and the lowest-lying diquark states. It is interesting
to observe that in the first plot, the 3̄ spin-0 diquark extrapolation is below twice the quark mass
extrapolation and that the 3̄ spin-0 diquark state is significantly more strongly bound than the 3̄ spin-
1 diquark. These results are consistent with the predictions of diquark models [16, 18]. We again
emphasize, however, that a much more detailed analysis must be done, particularly of diquarks
within baryons, before rigorous conclusions may be reached.

5. Conclusions

In this contribution, we have presented results from quenched lattice QCD simulations using
the overlap Dirac operator for meson and baryon observables, quark masses, meson final-state
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Figure 14: Positive-parity 3̄ diquark correlators for
am1 = am2 = 0.03 at β = 6.
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Figure 15: Quark propagator for input quark mass
am = 0.03 at β = 6.
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Figure 16: Positive-parity diquark spectra at β = 6.
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Figure 17: Negative-parity diquark spectra at
β = 6.

wave functions, and diquark correlations. One important result of this work is the demonstration
that techniques are mature for calculating propagators with the overlap Dirac operator on large
lattices, up to a chosen numerical precision, even with “rough” gauge backgrounds. Improved
algorithms or smoothing techniques both may help to make the calculation less computationally
demanding [19].

Our investigation also validates the good chiral properties of the overlap operator and demon-
strates good scaling properties between β = 5.85 and β = 6, indicating that the β = 6 results may
already be close to the continuum limit. In comparisons to experiment, our results suffer from the
shortcomings of the quenched approximation. Nevertheless, from this investigation and others it is
clear that it should be possible to use the overlap operator in dynamical fermion simulations, at the
very least with a mixed action formulation. Work in this direction is beginning.
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