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1. Introduction

The development of the algorithm [1] and current powerful machines [2] allows us to perform
unquenched 2 + 1 flavor simulation whose results can be compared with experiment with confi-
dence. CP-PACS and JLQCD collaborations have been carrying out the unquenched 2+ 1 flavor
simulations where the Iwasaki gauge action and an O(a) improved Wilson quark action have been
adopted. Five different masses for the degenerate up and down type quarks are simulated leading
to pseudo scalar meson masses in the range mpg/m, ~ 0.62 —0.78. The physical strange quark
mass lies between the two simulated strange quark masses and can therefore be reached by an in-
terpolation. More details and the status of these simulations have been reported in the proceedings
by T. Ishikawa.

The masses for the up and down quarks are rather heavy and an extrapolation to their physical
values is required. In order to achieve the extrapolation in a reliable way, we derive the functional
forms of physical observables on the basis of the Wilson chiral perturbation theory(WChPT). The
theory is formulated for lattice QCD with Wilson type fermions at non-zero lattice spacing a. The
main idea how this can be done was proposed in Ref. [3, 4]. Since then many observables have
been calculated at one loop order (for an overview see Ref. [5]).

Here we present the results for the simplest observables, the pseudo scalar meson masses. In
our calculations we include the O(a?) terms in the leading order Lagrangian. We refer to ref. [6]
for details and unexplained notations in the report. The other observables(vector meson masses,
the pseudo scalar decay constants and axial vector Ward identity quark masses) can be computed
in a straightforward way and will be shown in other places[7, 8].

2. Counting scheme

First of all, we have to specify an order counting scheme for an effective Lagrangian. The
leading order (LO) chiral Lagrangian of the WChPT is constructed from O(M) terms and the O(a)
term. Since the O(a) term has the same chiral structure as the mass term, the LO Lagrangian of
the WChPT assumes the same form as the one of continuum ChPT, provided one performs the
replacement m — M= m+-c,;a with c; being a combination of two low-energy constants [3, 9].
Although the O(a) term is superficially larger than the O(a?) term, the former term is irrelevant
since it is absorbed in the definition of the shifted mass m. The O(az) correction, on the other hand,
becomes important in the regime where M/Aqcp, ~ Ajcpa’, even though the A§cpal correction is
much smaller than 1 in general.

Suppose we consider the O(M) = O(rh, p?) and the O(a?) term as LO terms. Then the terms
of O(M2,Ma?,a*) can be regarded as next to leading order (NLO), since the loop expansion in
WChPT increases in units of M. We remark that the O(a*) term is not as relevant as the O(M2, Ma?)
terms for our final results for the pseudo scalar masses.

The proper order counting of the O(I\7Ia) term is more subtle than for the previously discussed
terms.!  Depending on the size of the O(Ma) contributions we may include it at leading order
where it subsequently enters the chiral logs, or we treat it as a NLO term and include it at tree level

1The O(a%) term is unproblematic since the arguments we gave for the O(a*) contribution aso apply for the O(a%)
term.
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only. The size of this term is indeed expected to vary significantly, depending on details of the
action of the underlying lattice theory. The O(I\7Ia) term contains one power of a and stems from
the Pauli term in the Symanzik’s effective action [10, 11, 12], which is used in an intermediate
step to match the lattice to the chiral effective theory. Consequently, the O(Ma) contribution in
the chiral Lagrangian is directly proportional to the coefficient of the Pauli term [9], and the size
of this coefficient is much smaller for improved theories with a clover term in the action than for
standard Wilson fermions. For fully non-perturbatively improved theories the coefficient is equal
to zero and no O(Ma) term appears in the chiral Lagrangian.

Since we have no a priori knowledge about the size of the O(I\7Ia) term we will be as general
as possible and present our results for three different order countings of this term. We first keep the
O(Ma) term at LO where it gives a contribution to the chiral log corrections. If the O(Ma) term is
assumed to be much smaller than the other LO terms we can easily expand our results. Performing
this expansion is equivalent to doing the calculation with keeping the O(I\7Ia) term at NLO. Finally
we can set this term to zero in order to obtain the results for non-perturbatively improved theories.

3. Effective Lagrangian

According to the spurion analysis, we find the LO Lagrangian, which consists of terms of
O(M,a%,Ma):

Lo = ;(%Z%ZT) — ?(MQZ-|r s"Mg)
+ I—; [ (E+EN2+E((E+2N?) + ¢y (221
+ fzz [Co(E+2"—2)(0,20,5") + & ((E+2" - 2)9,23,5)]
+ ? [265(Z+ 2N (MgZ 4+ Z"Mg) + & ((Z+ Z") (M= + Z"Mg))]
+ ? [265(Z — T (M= — M) + & ((Z — =) (MZ — ZTMy))] (3.0)

where (X) =tr X. £ =exp [l% Sa r@Ta] is an element of SU(3) with 11, being the pseudo scalar

meson fields. The SU(3) generators T2 are normalized according to tr T2TP = %éab. The first and
the second term in the first line are the standard O(p?) and O(m) terms [13], respectively. The
second line comprises the O(a?) terms [14, 15]. The last three lines contain the O(p2a) and O(1Ma)
contributions [9].

For notational simplicity only we use a different notation for the low energy constants associ-
ated with the non-zero lattice spacing (the cand €’s) compared to the notation in Refs. [9, 14, 15]. In
particular, we have chosen to absorb the explicit powers of the lattice spacing a into the coefficients
¢, €. Consequently, as a function of a these coefficients scale according to ¢, &, ¢;,€;,C;, 6 = O(a)
and c,,&,,c, = O(a?). The quark mass matrix is given by Mg = diag(m, m, ms), where isospin sym-
metry is assumed. Note that O(a) contribution is already absorbed in the definition of My, so there
is no O(a) term in the chiral Lagrangian.

The NLO Lagrangian provides the necessary counter terms in order to remove the UV diver-
gences in 1-loop integrals. We consider O(M?), O(a?M) and O(aM?) terms as the next leading
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order. The first is a continuum one associated with the Gasser-Leutwyler coefficients. The com-
plete Lagrangian at O(a?M) and O(aM?) is cumbersome and has not been computed so far. In our
calculation, we only list the terms that contribute to the meson propagators, which we need for the
calculation of the pseudo scalar masses. These terms are straightforwardly found by a standard
spurion analysis and can be found in Ref. [6].

4. Pseudo scalar meson mass for mulae

The calculation of the pseudo scalar masses from the chiral Lagrangian in the previous section
is straightforward. Here we simply quote the final result for the quark mass and lattice spacing
dependence of the pseudo scalar meson masses. The total contribution from LO tree, LO 1-loop
plus NLO tree for ¢ = 1, K and n are given as follows:

mﬁlLQq, = (x+Pyy) + %[w EK Ly (A$x+ B$y+ Qﬁc)
=K.

_ {Exx—i— P,E,Y+ Bl + EQY + P(PExyxy}] : (4.1)

where the first parenthesis is the tree level contributions, the terms proportional to L is the chiral
logarithm contributions, and the polynomial terms from the NLO Lagrangian are in the second line.
Here we have defined the x and vy,

2B, B,

X=73 3

where mand M are the shifted mass defined in [6]. Since we are dealing with 2+ 1 flavor theory,
we have two independent quark masses. Here we choose the average of the quark masses X, and the
magnitude of the U (3) flavor symmetry breaking y as independent variables. The leading order
pseudo scalar masses are written in a very simple form in terms of x and y,

ﬁ.&'[:x-'_zya rLﬁZK:X_ya rthz

The chiral logarithms for each virtual pseudo-scalar meson are given as L 0= Al u—%’ ,

where the u is the renormalization scale. The numerical valued vector P and matrix Q are
given by

Pr 2 QF QF QF 541
Po=| PR |[=]-1] Qf=[QcQkay|=]|361]. (4.4)
Py —2 Qr Qi Qf 343

The coefficients of the chiral logarithms, A%, B% and C are functions of the low energy constants
in LO Lagrangian, ¢; and €. The A& and B% have typical form as a function of the lattice spacing
a

A$,BY =wy+w,a+0(a%), (4.5)

where w, is the continuum value and w, a is a linear combination of c;, ¢, ¢;, €35 and ¢;. The Cis
proportional to a?. For the coefficients of the NLO polynomial terms, the Ex and Ey, whose origin

050/ 4



Wilson chiral perturbation theory for 2+1 flavors Shinji Takeda

is O(azl\7l) terms, scale according to a? and vanish in the continuum limit, whereas, the Eyy, Eyﬁ‘;
and Eyy have typical form,

E =V, +v,a+0(a?), (4.6)

where v, are some linear combination of the Gasser-Luetwyler coefficients and v, a are functions of
the low energy constants of O(aM?) terms. In order to cancel the divergence from the loop integral,
the low energy constants in the polynomial terms need to be renormalized.

The A% and Bff; terms in eq.(4.1) produce the chiral logarithms of type afig Infiég. The origin
of this logarithm are O(al\7|2) terms in the LO Lagrangian. Furthermore, C term in eq.(4.1) produces
the more chirally singular logarithm of type a?még Infmg, whose origin is O(a?) terms in the LO
Lagrangian. These kinds of logarithms were already observed in N; = 2 case in Ref.[15]. We have
confirmed the behavior also in N; = 241 case.

Now, our main purpose is to perform fits for the pseudo-scalar meson masses. It is practically
important to check the number of independent fit parameters. We find that the independent fit
parameters are f,By,Kc, ¢, Cy, C3C55, Cs, C, Ex, Ey, Exx, Ey’§,, E{fy, Egy and Eyy, and the total number
is 16. The number is larger than that of the conventional polynomial fit used in the [16] where the
number is eight.

Ineq. (4.1), O(I\7Ia) terms are considered at LO. Here let us see the case that these terms
are treated as NLO corrections and we call the counting scheme WChPT scheme B (We call the
original one WChPT scheme A). It is natural to image that the scheme A is applicable to coarse
lattices than the scheme B. On the other hand, the scheme B has an advantage that the number of fit
parameters are smaller than that of the scheme A. In order to see this point, let us check formulae
for the scheme B. Forms with the scheme B are basically same as the case of scheme A in eq.(4.1),
but with w; =0 and v; =0 in egs. (4.5) and (4.6). The equation, w; = 0, indicates the absence of
the chiral logarithms of type, amis InfMé. However, the more chirally singular one, a2 In Mg,
remains in the mass formulae in the scheme B. One should keep in mind that, the E, and Ey start
at O(a) in the scheme B, since now O(aM) terms are in the NLO Lagrangian, although they are
O(&?) in the scheme A. The scaling order is different depending on the counting scheme. Note
that Ex, Eyy, E)*fy and E,y are not independent any more(see [6] for more details). The number of
independent parameters is reduced compared to the result given in the previous section. We find
that the total number of independent parameters is reduced from 16 to 9.

In the actual simulation for 2+ 1 flavors by CP-PACS/JLQCD collaborations, the non-perturbative
O(a) improved Wilson quark action are employed. In this case, it is possible to reduce of the
number of fit parameter. With the above action (and non-perturbative O(a) improved composite
operators), there are no O(a) terms in one-shell quantities. This means that there exists no Pauli
term in the Symanzik’s effective theory, but with replacements

m — m+bMnPa+ b (2m+ mg)ma+ b (2n? + mf)a, (4.7)

my — ms + by mta+bi) (2m-+ my)mea+ by (2nf + nE)a, (48)
2m+mg)a

% — & (1+bg%> : (4.9)

As a consequence, as long as one considers on-shell quantities, O(a), O(aM), O(aM?), - -- terms
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are absent in the WChPT, but with replacement

m — m=m+ P fa+ b 2m+ m)ma+ b 2mz-|-ms2 (4.10)
M — o= M+ b{Dita+ b2 (2 rﬁs)msa+b (217 +t)a, (4.12)
B, — By = By[1+ bg(2rh+ k) ]. (4.12)

The last modification comes from the mass dependence of g%(eq.(4.9)) in the Symanzik’s effective
theory. In this case, it turns out that the structure of the chiral logs are the same as WChPT scheme
B case The number of independent parameters is 10, reduced from previously found 16.

5. Concluding remarks

In the report we computed the pseudo scalar meson masses in 2+1 flavor WChPT to 1-loop
order. We considered results for three different order countings, appropriate for various sizes of
the O(aM) term in the chiral Lagrangian. Depending on the lattice action used in the numerical
simulation (unimproved, perturbatively improved, non-perturbatively improved) one has to choose
one result for the chiral extrapolation. Since we have no prior knowledge about the size of the
O(al\7|) contribution we suggest to perform fits to the data with all three forms and let the data
decide which form is most appropriate. The number of unknown fit parameters is significantly
larger than in 2 flavor WChPT. Performing the chiral extrapolation of the CP-PACS/JLQCD data
using our results is work in progress.
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