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In this presentation we review our recent attempt to addresstwo questions concerning dynamical

correlations inside the nucleon: (i) is the non-perturbative quark-quark interaction particularly

attractive in the color antitriplet 0+ diquark channel? (ii) are such correlations induced by in-

stantons? We define appropriate ratios of Euclidean three-point functions which encode specific

information about two-body correlations and can be computed on the lattice. We analyze such cor-

relations functions in different models with very different diquark content: a naive non-relativistic

SU(6) quark model, the Random Instanton Liquid Model and theQuark Chiral Soliton Model.

We show that such models lead to radically different predictions. We conclude that a lattice QCD

calculation of such correlation functions can determine which picture is most realistic.
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Figure 1: Predictions for the ratiosR1(r) = ργ3(r)/ργ5(r) (LEFT PANEL) and for the ratioR2(r) =

ργ5γ5(r)/ργ5(r) (RIGHT PANEL) obtained in the Non-Relativistic Quark Model(NRQM), in the Random
Instanton Liquid Model (RILM) and in the Chiral Soliton Model (CSM).

1. Introduction

The question if the non-perturbative interaction in QCD is characterized bya particularly
strong attraction in the color anti-triplet 0+ diquark channel has long been debated. From a phe-
nomenological perspective, some evidence in this direction has been gathered in the last decades
(see [1] for a recent review). For example, it has been observed that the anti-triplet 0+ diquarks
play an important role in non-leptonic weak decays of both hyperons and kaons [2, 3]. From a
more fundamental perspective, however, a conclusive proof is still missing. Lattice gauge theory
represents the only presently available tool for performing non-perturbative calculations in QCD
and can be used to investigate the role of diquark correlations, from firstprinciples.

In this talk we review a recent investigation on diquarks correlations in the nucleon[4]. For
alternative studies on diquark correlations in vacuum or in heavy-light hadrons see the contribu-
tions of Orginos and Lucini, in this conference. We identify and study a setof lattice-calculable
matrix-elements, which are very sensitive to the spin-flavor structure of thequark-quark interac-
tion. In order to show that these matrix elements encode important information ondiquark corre-
lations inside hadrons, we compute them using three different phenomenological models: a naive
Non-Relativistic Quark Model, in which dynamical diquark correlations areabsent, the Random
Instanton Liquid Model, where 0+ diquarks are strongly favored by the ’t Hooft interaction, and a
Chiral Soliton Model, where the ’t Hooft interaction is treated at the mean-field level, hence with
no dynamical two-body correlations. We show that these models lead to verydifferent predictions.

In addition, we also propose a lattice calculation to check if the strong attractionin the 0+

anti-triplet diquark channel is mediated by instantons.

2. Diquark density matrix elements

Direct insight on quark-quark correlations inside specific hadrons can be gained by focusing
on two-bodylocal density operators, which simultaneously probe the position and the discrete
quantum numbers of two quarks. In this view, we consider a set of four-field operators (which we
shall refer to asdiquark densities), in which two quarks with quantum numbers of a 0+ and 1+

color anti-triplet diquark are destroyed and re-emitted, in the same point.
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We work with Euclidean space-time and we defineDΓ(r) = Fa†
Γ (r,0)Fa

Γ (r,0), with Fa
Γ (x) =

εabcua(x)CΓdb(x). C = i γ2 γ4 is the charge-conjugation operator,Γ ∈ {1,γ5,γµ ,γµ γ5,σµ,ν} and
a,b,c are color indices. The operatorFa

Γ (x) absorbs two quarks in a point with quantum numbers
of a color anti-triplet diquark. For example,Fa

γ3
(x) annihilates a 1+ diquark, whileFa

γ5
(x) absorbs

0+ diquarks. Hence, the matrix element:

ρΓ(r) = 〈P|DΓ(r)|P〉 (2.1)

measures the probability amplitude to find at timet = 0 two quarks at the pointr in the proton, in
a anti-triplet color state and with quantum numbers specified byΓ.

The choice ofΓ determines the transformation property of theFa
Γ (x) operator under exchanges

of the flavor indices. ForΓ = γ5, the diquark state is an iso-scalar state. WhenΓ = γ4 the diquark
state is an iso-vector state.

In the following section we discuss how the comparison of the different matrixelements (2.1)
can provide useful insight about the strength and the spin- and flavor-structure of the quark-quark
interaction.

2.1 Are the correlations 0+, 3̄ channel particularly strong?

If the quark-quark interaction is particularly attractive in the 0+ anti-triplet diquark channel we
expect that the 0+ diquark densityργ5(r) should be enhanced with respect to a scenario in which the
interaction is not particularly attractive. In fact, theu andd quarks would have a larger probability
“to be found” in the same point and be destroyed by the local operatorFa

γ5
(x).

Hence, in a scenario in which 0+ diquark correlation are particularly strong we expect that the
ratio

R1(r) =
Dγ4(r)
Dγ5(r)

(2.2)

should be suppressed with respect to a scenario in which direct dynamical correlations are not
particularly strong in this channel.

To quantify this statement let us compare the predictions for this ratio obtained inthe three
models discussed above. The results of our phenomenological calculations are shown in Fig. 1(left
panel)1. In theSU(6) Non-Relativistic Quark Model, in which there are not dynamical diquark
correlations, this ratio is completely determined by theSU(6) spin-flavor structure of the wave-
function, and is identically equal to 1/3. In the Random Instanton Liquid Model, R1(r) is sizebly
reduced in magnitude (by a factor≃ 5). The prediction of the Chiral Soliton Model is very different
from that of the Random Instanton Liquid Model Inside the soliton ( i.e. for|r| . 0.7−0.8 fm ).
In particular, atr = 0 thep-wave contribution from the lower components of the spinors vanishes
and one recovers the Non-Relativistic Quark Model Results. The 1+ diquark density in the soliton
drops down very rapidly at the border, where the pion field is most intense.

These results can be interpreted as follows. In the Random Instanton Liquid Model, the spin-
and flavor- dependent ’t Hooft interaction generates a strong attraction which enhances the proba-
bility amplitude of finding two quarks in the same point in the 0+ anti-triplet configuration, relative

1We refer the interested reader to our original work for all the details of thecalculations
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to the amplitude of finding them in the 1+ configuration. This explains why the Random Instanton
Liquid Model prediction forR1(r) is much smaller than that of theSU(6) Non-Relativistic Quark
Model and the Chiral Soliton Model.

Based on this discussion we conclude that, if the non-perturbative QCD interactions generate
a strong correlation in the 0+ anti-triplet channel, then we predict that the curve obtained from a
lattice calculation should lie much below 1/3. If lattice simulations found thatR1(r)∼1/3, than this
would imply that diquarks are not particularly correlated in the 0+ diquark channel.R1(r) > 1/3
would represent an indication that the quark-quark interaction is less attractive in the 0+ channel,
relative to the 1+ channel. This would certainly be a very surprising result, since the (3̄c, 3̄ f )
channel is favored by both the perturbative and the instanton-mediated interactions.

2.2 Are the diquark 0+, 3̄ correlations induced by instantons?

The ratioR1(r) does not encode information about the microscopic dynamical mechanism
underlying such diquark correlations. In fact, two completely different quark-quark effective inter-
actions (e.g. one with a chirality-conserving vertex and one with a chirality-flipping vertex) may
lead to the same predictions, as long as the short-range attraction in the 0+ channel is sufficiently
strong.

In order to gain some insight on the microscopic origin of diquarks we need toanalyze a
different ratio:

R2(r) =
ργ5 γ4(r)
ργ5(r)

. (2.3)

The results of our calculations in the three phenomenological models are reported in Fig. 1
(RIGHT PANEL). In the Non-Relativistic Quark Model, both theργ5(r) and ργ4γ5(r) densities
probe the 0+ diquark content of the proton, soR2(r) = 1. Also the Random Instanton Liquid
Model prediction remains almost constant, but its magnitude is smaller than the Non-Relativistic
Quark Model, by a factor 3 or so. The fact that, in the Random Instanton Liquid Model,R2(r) ≪ 1
has an important dynamical explanation. It is due to the different sensitivityof the numerator and
denominator to the so-calleddirect-instantoncontribution. Theργ5(r) diquark density receives
maximal contribution from the interaction of quarks with the field of the closest (direct) instanton,
in the vacuum. This statement can be verified by computing the correlator in the single-instanton
approximation, discussed in [6]. On the other hand, the density in the denominator,ργ5 γ4(r) does
not receive such a direct-instanton contribution and instanton-induced effects come only from the
interactions of quarks with many instantons. The magnitude of the latter contributions are para-
metrically suppressed by the diluteness of the instanton vacuum.

We remark that the very strong channel dependence of hadronic correlation functions is a
well-known dynamical implication of instanton models. It is quite hard to obtain this effect in
alternative dynamical mechanisms. In the Chiral Soliton Model, the ratioR2(r) remains of order 1
for |r|. 1 fm and drops rapidly at the border of the soliton. The significant deviation of the Chiral
Soliton Model result from the Random Instanton Liquid Model prediction shows that a mean-field
approach does not capture correlations associated to the direct-instanton effects.

From this discussion it follows that, if the scalar diquark correlations are mainly induced by
instantons or in general by a Nambu-Jona-Lasinio type of interaction (i.e. chirally symmetric, with
a chirality flipping vertex), then a lattice measurement should giveργ4γ5(r)≪ ργ5(r), soR2(r)≪ 1.
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3. Diquark densities on the lattice

In this section we discuss how the diquark densities defined above can be computed in lattice
QCD. It should be mentioned that this approach does not only apply to Latticecalculations. In
fact, the same approach was used to compute the diquark densities matrix elements in the Random
Instanton Liquid Model, in which the Monte Carlo average over all gauge configurations is replaced
by and average over the configurations of an instanton liquid ensemble [5]. We start by considering
the following Euclidean three-point correlation function:

GΓ(xi ,xf ,y) = 〈0| Jα(xf )DΓ(y) J̄α(xi) |0〉, (3.1)

whereDΓ(y) is the diquark density operator, andJα(x) = εabcuT
a (x)Cγ5db(x)uα

c (x) is the usual
interpolating operator which excites states with the quantum numbers of the proton.

The correlator (3.1) represents the probability amplitude to create a state with the quantum
numbers of a proton at pointxi , to absorb and re-emit two quarks in a given diquark configuration
at a the pointy, and to finally re-absorb the three-quark state at the pointxf .

Next, we insert two complete sets of eigenstates of the QCD Hamiltonian in (3.1) and parame-
trize the matrix elements of diquark densities as:

〈N(p′,s)|DΓ(y)|N(p,s)〉 = hΓ(q2) e−iq·y υs′(p
′) υs(p). (3.2)

We obtain, after some straightforward manipulation [4]:

GΓ(xi ,xf ,y) = Λ2
∫

d4z RΓ(y−z) Tr [ S(xf ;z) S(z;xi) ], (3.3)

whereS(x′,x) is the nucleon propagator in coordinate space andR(y) is the 4-dimensional Fourier
transform ofhΓ(q2).

The physical interpretation of this result is the following. In the large Euclidean separation
limit, the correlatorGΓ(xi ,xf ,y) is parametrized by the functionRΓ(x), which encode informa-
tion about the probability amplitude to find the diquark at a given distance fromthe center of the
nucleon. The convolution ofRΓ(x) with the trace of proton propagators takes into account the
de-localization of the position of the center of mass of the proton.

In order to clarify the relationship between the correlator (3.1) and the diquark density (2.1) it
is instructive to consider first the static approximation for the nucleon, in which M → ∞. In this
limit Eq. (3.3) becomesGΓ(xi ,xf ,y) = 2 Λ2e−(x4

f−x4
i )M δ (xf −xi)

∫
dz4 RΓ(r,z4). where we have

used translational invariance to sety4 = 0 and we have introducedr := y−xi, the distance between
the center of the proton and the position where the diquark is absorbed. The last integral term in
this expression represents the time-integrated probability amplitude to find a diquark at a distance
r from the center of the nucleon. We can therefore identify this quantity with thediquark density
(2.1) defined in section (2):

ρΓ(r) =
∫

dz4 RΓ(r,z4). (3.4)

Hence, for an infinitely heavy nucleon, the expression relating the correlation function (3.1) to the
diquark density is simply:GΓ(xi ,xf ,y) = 2 Λ2e−(x4

f−x4
i )M δ (xf −xi) ρΓ(r).
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If the nucleon mass is kept finite, there are corrections to the static limit expression (3.4),
arising from replacing the static propagator with the exact expression. Asa result, the convolution
function Tr[S(xf ;z)S(z,xi)] in (3.3)− which determines the position of the center of mass of the
nucleon− is de-localized on a volume which depends on the Euclidean timeτ. It is straightforward
to verify that for a typical massM ≃ 1 GeV and a typical Euclidean separationτ ≃ 1 fm the position
of the center of mass of the nucleon is smeared on a volume of radius≃ 0.3 fm, centered around
the origin, therefore rather small. From this discussion we conclude that ratios of diquark densities
can be estimated with an accuracy ofδr ∼ 0.3 fm by computing ratios of correlation functions
GΓ′

(xf ,xi ,y)/GΓ(xf ,xi ,y) with Euclidean time separations between nucleon overlap operators and
diquark density operators of the order of the fm. For example, in the Random Instanton Model
calculations shown in the previous session, we have computed (3.1) choosing xi = xf = 0, y =

(0,0, r,0) andx4
f = −x4

i := τ, with τ = 1 fm.
Notice that taking ratios allows to maximally reduce the effects of the correctionsdue to center

of mass de-localization. In fact, such corrections affect in the same way both the numerator and the
denominator and do not change the normalization of the correlation function.

4. conclusions

In this work we have addressed the question of how is it possible to study two-body diquark
correlations in hadrons, using lattice QCD. We have identified some suitable lattice-calculable cor-
relation functions, which allow to probe directly the diquark content of the nucleon. In particular,
the ratioR1(r), defined in Eq. (2.2), measures the strength of the correlations in thescalardiquark
channel, relative to that in the 1+ channel. We predict that a lattice measurement must lead to
R1(r) ≪ 1/3 if scalar diquark correlations are dynamically enhanced.

The ratioR2(r), defined in Eq. (2.3), can be used to check the hypothesis according to which
diquark correlations are mediated by instantons. We have argued that, in thiscase, we expect that
lattice measurements should giveR2(r) ≪ 1.

We have computed these ratios using three phenomenological models. We have found that
they lead to radically different predictions for the matrix elements we have selected. Hence, a
lattice measurement could point out which picture is most realistic.

References

[1] R. Jaffe and F. Wilczek,Quarks, Diquarks and Pentaquarks, Phys. World17, 25 (2004).

[2] B. Stech and Q.P. Xu, Z. Phys.C49 (1991) 491 and references therein.

[3] M. Cristoforetti, P. Faccioli, E. V. Shuryak and M. Traini, “Instantons, Diquarks and the Delta(I) =
1/2 Rule for Non-Leptonic Hyperon Decays, Phys. Rev.D70, (2004) 054016.

[4] M. Cristoforetti, P. Faccioli, G.Ripka and M. Traini,Are there Diquarks in the Nucleon?, Phys. Rev. D
71, 114010 (2005)

[5] T. Schäfer and E.V. Shuryak,Instantons in QCD, Rev. Mod. Phys.70 (1998) 323.

[6] P. Faccioli and E.V. Shuryak,A Systematic Study of the Single Instanton Approximation, Phys. Rev.
D64, (2001) 114020.

052 / 6


