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1. Introduction: What are Tensor GPDs?

Generalized Parton Distributions (GPDs) have in recent years evolved into the standard com-
prehensive formalism to analyse inclusive and exclusive processes on the same theoretical footing
and to combine the information content of different measurements in the most efficient manner.
(For a very nice review see [1].) Because they contain such a wealth of information GPDs have a
potentially highly non-trivial functional form and there exist many different ones, e.g. eight for a
spin 1

2 hadron like the nucleon. Therefore, although there are many different experiments which
provide information on GPDs additional input from lattice calculations is indispensable to pin down
their shape. This is especially true for tensor GPDs for which direct experimental information is
very hard to obtain. Our calculations for moments of tensor GPDs [2] should be seen as part of
the comprehensive QCDSF programme to study the structure of hadrons. The results should be
trusted to the extent to which the results agree with experimental results for those GPDs for which
the latter are available.

GPDs are response functions of hadrons: some quark or gluon with longitudinal momen-
tum fractionx+ ξ is replaced by one with longitudinal momentumx− ξ plus possibly trans-
verse momentum. The precise definition of the tensor GPDs of a nucleon reads for the process
N(P1)+Γ∗(q1)→ N(P2)+Γ(q2)

−i
∫

dz−

2π
eixP+z−〈P2| q̄(−1

2
z)σ

+ j
γ5q(

1
2

z) |P1〉
∣∣∣
z+=0,z⊥=0

=
−i
P+

[
HTq(x,ξ , t) N̄(P2)σ+ j

γ5N(P1)+ETq(x,ξ , t) N̄(P2)
ε+ jαβ ∆αγβ

2M
N(P1)

+H̃Tq(x,ξ , t) N̄(P2)
ε+ jαβ ∆αPβ

M2 N(P1)+ ẼTq(x,ξ , t) N̄(P2)
ε+ jαβ Pαγβ

2M
N(P1)

]
(1.1)

with ∆µ = q1µ −q2µ , t = ∆2, Pµ = (P1µ +P2µ)/2, nµ = (1,0,0,−1)/(
√

2P+), hencen·P = 1, and
ξ = −n ·∆/2. An OPE analysis shows that the n’th moment of a GPD is a polynomial inξ of at
most ordern. The coefficients are functions of the remaining variablet and are called Generalized
Form Factors (GFFs), in our case

Hn
T(ξ , t) =

∫ 1

−1
dx xn−1HT(x,ξ , t) (1.2)

Hn=1
T (ξ , t) = AT10(t) = gT(t), Hn=2

T (ξ , t) = AT20(t),
H̃n=1

T (ξ , t) = ÃT10(t), H̃n=2
T (ξ , t) = ÃT20(t),

En=1
T (ξ , t) = BT10(t), En=2

T (ξ , t) = BT20(t),
Ẽn=1

T (ξ , t) = B̃T10(t) = 0, Ẽn=2
T (ξ , t) = (−2ξ )B̃T21(t) .

(1.3)

These GFFs are related to matrix elements according to

A[µν ]S{νµ1}
〈
P2Λ′∣∣ ψ̄(0)iσ µν i

↔
D

µ1
ψ(0) |P1Λ〉=A[µν ]S{νµ1}U(P2, Λ′)

{
iσ µνPµ1AT20(t)

+
P[µ∆ν ]

M2 Pµ1ÃT20(t)+
γ [µ∆ν ]

2M
Pµ1BT20(t)

+
γ [µPν ]

M
∆µ1B̃T21(t)

}
U(P1,Λ), (1.4)
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To illustrate the meaning of these functions let us quote a result from [3] for the corresponding
impact parameter (b⊥) dependent GPDs in the transverse plane:

1
(2π)2

∫
d2∆⊥eib⊥·∆⊥

∫
dz−

2π
eixP̄+z−〈P2| q̄(−1

2
z)γ

+[1+~s·~γγ5]q(
1
2

z) |P1〉
∣∣∣
z+=0,z⊥=0

=
1
2

[
H−Si

ε
i j b j 1

m
E′−si

ε
i j b j 1

m

(
E′

T +2H̃ ′
T

)
+siSi

(
HT −

1
4m2 ∆bH̃T

)
+si(2bib j −b2

δ
i j )Sj 1

m2 H̃ ′′
T

]
(1.5)

with E′
T = ∂

∂b2 ET ,H̃ ′′
T =

(
∂

∂b2

)2
H̃T . As nonzerob⊥-dependent terms can only appear due to or-

bital angular momentum these terms have a straight-forward physical meaning. The second term
describes the correlation of nucleon spin and quark orbital angular momentum, the third the corre-
lation of quark spin and quark orbital momentum and the fourth the correlation between nucleon
and quark transverse spin.

2. Simulation and results

We used the QCDSF/UKQCD configurations withNf = 2 flavours of dynamical non-perturba-
tively O(a) improved Wilson fermions and Wilson glue. Only connected graphs were calculated,
which actually should be a very good approximation for helicity flip GPDs. The results were non-
perturbatively renormalized (Rome-Southampton method) and are given in theMS-scheme at a
scale of 2 GeV2. The resulting GFFs are shown in Fig.1.

Simple dipole fits to these data work very well and give the fit parameters

〈1〉u
δ

= Au
T10(0) = 0.857±.013, mD = 1.732±.036GeV,

〈1〉d
δ

= Ad
T10(0) =−0.212±.005, mD = 1.741±.056GeV,

〈x〉u
δ

= Au
T20(0) = 0.268±.006, mD = 2.312±.071GeV,

〈x〉d
δ

= Ad
T20(0) =−0.052±.002, mD = 2.448±.173GeV .

(2.1)

From the first moments we can deduce the much discussed isovector tensor charge

〈1〉u
δ
−〈1〉d

δ
= 1.068±0.016 . (2.2)

This results agrees on the 5-15 % level with some previous lattice results in the quenched approx-
imation [5]. The importance of this number lies in the fact that the difference between the tensor
charge andgA tests directly the effects due to different orientations of the nucleon spin relative to
the boost direction. (In the absence of any such effects it would be zero.) The tensor charge has,
therefore, been the subject of numerous model calculations. We find only a very mild dependence
on the pion mass, as illustrated in Fig.2.

3. The Soffer bound

Just as normal GPDs contain information on the unpolarized and longitudinally polarized
quark distributions,q(x,Q2) and∆q(x,Q2), the tensor GPDs contain information about the third
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Figure 1: The generalized formfactorsAT10 andAT20 together with dipole fits.

twist-2 distribution function, the quark-transversityδq(x,Q2). Transversity is the probability to hit
a quark with momentum fractionx and a transverse spin orientation parallel to a transverse nucleon
spin minus the probability for the opposite orientation. The determination of this last distribution
function is one of the major aims of several large high-energy experiments. Presently the main task
is to determine its overall-size. General unitarity arguments lead to the upper bound

|δq(x)| ≤ 1
2

(∆q(x)+q(x)) (3.1)

This ’Soffer bound’ applies to the quark and antiquark distributions separately. The degree to which
it is saturated is crucial for the prospects of an experimental determination. Our results do not really
allow us to test it, but we did obtain a closely related quantity, which coincides with moments of
the quark transversity to the extent that antiquark contributions are negligible.

2
∣∣∣〈xn〉q

δ
− (−1)n〈xn〉q̄

δ

∣∣∣(
〈xn〉q− (−1)n〈xn〉q̄ + 〈xn〉q∆ +(−1)n〈xn〉q̄∆

) , n = 0,1 . (3.2)

Because there does not exist a gluon transversityQ2-evolution does not produce a large transversity-
sea contribution, in contrast to the unpolarized and longitudinally polarized case. Therefore, the
asymmetries to be measured experimentally become very small for smallx and consequently it is
mainly the largex domain which is important, were neglecting the sea, i.e. disconnected graphs,
should be indeed a good approximation. The fact that our ratios are close to 1, see Fig.3, is thus
good news for planned experiments like e.g. PAX at the FAIRpp̄ collider. Note also that the ratios
are larger for〈x〉 than for〈1〉, as expected.
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Figure 2: The extrapolated moments att = 0 as a function of the pion mass squared.

4. Conclusions

Tensor GPDs contain very interesting information on the internal hadron structure, e.g. the
quark transversity distributions and the correlations between transverse quark spin, transverse nu-
cleon spin and quark orbital angular momentum, as function of the position in the transverse plane.
Our results indicate that these GPDs are not small. QCDSF/UKQCD has performed the first lattice
calculations for the lowestx-moments of the tensor GPDs. These Generalized Form Factors are
well fitted by a dipole form. The resulting value for the tensor charge agrees well with expectations
and some earlier quenched lattice results. Results for moments of the tensor GPDsET , ẼT andH̃T

are forthcoming.

Acknowledgements

The numerical calculations have been performed on the Hitachi SR8000 at LRZ (Munich), on
the Cray T3E at EPCC (Edinburgh), and on the APEmille at NIC/DESY (Zeuthen). This work is
supported in part by the DFG (Forschergruppe Gitter-Hadronen-Phänomenologie) and by the EU
Integrated Infrastructure Initiative Hadron Physics under contract number RII3-CT-2004-506078.
and by the Helmholtz Association, contract number VH-NG-004.

References

[1] M. Diehl, Generalized parton distributions, Phys. Rept.388(2003) 41, [hep-ph/0307382 ].

P
o

S
(L

A
T

2
0

0
5

)0
5

5

055 / 5



Moments of Generalized Tensor Parton Distributions Andreas Schäfer

Figure 3: The Soffer-bound-like ratio from Eq. (3.2) for different quark flavours.
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