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1. Introduction

Numerical simulations with lattice QCD are bound to rather small lattice volumes when deter-
mining the hadron spectrum and other low energy parameters in QCD. The computed observables
show a volume dependence and a thorough understanding of these effects is important for a correct
interpretation of numerical data. We report on recent progress related to analytical finite volume
studies in case of the pion mass.

A long time ago Lüscher established an asymptotic formula [1] which relates the size depen-
dence of the pion mass Mπ with the ππ-forward scattering amplitude Fπ(ν),

MπL −Mπ = − 3
16π2Mπ L

∫ ∞

−∞
dy Fπ(iy)e−

√
M2

π +y2L +O(e−
√

3/2Mπ L) , (1.1)

with MπL the pion mass in finite volume and where the constraint MπL � 1 is assumed. The con-
tributions in the low energy region are enhanced, where the ππ-scattering amplitude is represented
very accurately through its chiral representation [2, 3]. At leading order in the chiral counting the
forward scattering amplitude assumes to be a constant, and the integral simplifies to a modified
Bessel function of the second kind. When Colangelo and Dürr evaluated subleading finite volume
effects with Lüscher’s formula, they observed numerically enhanced corrections with respect to the
leading order [4]. These investigations show a clear necessity to go beyond leading order calcula-
tions in order to have the finite volume effects of the pion mass under control. Furthermore, as the
derivation of eq. (1.1) takes into account only exponential contributions of the order exp(−MπL)

and systematically drops those of the order exp(−
√

3/2MπL), the question arises, whether the
missed terms might turn out to be numerically relevant. The same question also concerns the
asymptotic formulae of decay constants [5]. As we will show, a full two-loop calculation of the
pion mass in finite volume ChPT clarifies these open points.

The two-loop calculation appears to be interesting also for its own right. To date, a number
of finite volume calculations have been performed at one-loop order [6], but as far as we know
two-loop calculations have only been performed for the quark condensate [7] and for low-energy
observables in a closely related field [8]. As finite volume effects occur first at the one-loop level,
only a two-loop calculation – or alternatively if existing, an asymptotic formula à la Lüscher –
leads to a better understanding of the convergence behaviour of the perturbative expansion.

2. ChPT in finite volume

Chiral Perturbation Theory (ChPT) is the effective theory for QCD at low energies. It is nowadays
a mature field which has been applied successfully for a variety of phenomena, in particular in the
meson sector. For an introduction and a current status of the field, we refer to Ref. [9, 10].

The effective framework is still appropriate, when the system is enclosed by a box of size
V = L3. We refer to the literature for the foundations [11, 12, 13] and a recent review [14]. Here,
we only remind of the fundamental results which guided the present calculation: the volume has to
be large enough, such that ChPT can give reliable results, 2Fπ L � 1. The perturbative calculation
is bound to the value of the parameter MπL. Whether it exhibits to be large (Mπ L � 1, ”p-regime”)
or small (Mπ L . 1, ”ε-regime”) implies a different power counting. However, in both cases the
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effective Lagrangian is the same as in the infinite volume. Here, we only cover the ”p-regime”,
where the system is distorted mildly and the only change brought about by the finite volume is a
modification of the pion propagator due to the periodic boundary conditions of the pion fields

G(x0,x) = ∑
n∈Z3

G0(x0,x+nL) , (2.1)

with G0(x) the propagator in infinite volume.

3. Pion in finite volume

The pion mass in finite volume is defined by the pole equation

G( p̂L)−1 = 0 , for p̂L = (iMπL,0) , (3.1)

where G(p0,p)−1 is the Fourier transform of the connected correlation function

〈π1(x)π1(0)〉L = L−3 ∑
p

∫ d p0

2π
eipx G(p0,p) ,

G(p0,p)−1 = M2 + p2 −ΣL(p2) , (3.2)

with ΣL(p2) the self-energy in finite volume and M2 the pion mass in the chiral limit in infinite
volume. A determination of the pion mass amounts thus to an evaluation of the self-energy in a
loop expansion. At one-loop order the finite volume corrections have been evaluated in [11]. Here,
we discuss the main steps which guided the two-loop calculation. A detailed derivation of the
results will be given elsewhere [15]. It is convenient to write the pion mass in finite volume to two
loops in the following manner,

M2
πL = M2

π −Σ(1)−Σ(2) ,

M2
π = M2 −Σ(0) , (3.3)

where Σ(r), r = 0,1,2, denote the contribution of the self-energy with r propagators in finite volume
with non-vanishing vector n (cf. eq. (2.1) ). These terms shall be discussed in some detail.

3.1 Self-energy to 0’th order: Σ(0)

The contributions to Σ(0) are volume independent by definition and merely renormalize the pion
mass, cf. eq. (3.3). A detailed discussion of this calculation can be found in [2], with which we
agree.

3.2 Self-energy to 1’st order: Σ(1)

As Lüscher showed [1], the leading finite volume effects are captured in Σ(1) which can be summed
up in closed form

Σ(1) =
1
2

∫ d4q
(2π)4

∞

∑
n=1

m(n)G0(q)eiq1
√

nL Γππ ( p̂,q,− p̂,−q) , (3.4)
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V

Re q1

Im q1

Figure 1: Integration contour in the complex q1 plane (dashed line) with the pole from the pion propagator
(diamond) and the branch cut from the ππ-scattering amplitude.

with p̂ = (iMπ ,0), Γππ ( p̂,q,− p̂,−q) the 4-point function of ππ-scattering in the forward scattering
kinematics and m(n) the number of integer vectors z with z2 = n. Eq. (3.4) may still be simplified
considerably. We perform a contour integration in the complex plane of the first component q1.
Singularities are met by the pole of the propagator as well as the branch cuts from the propagator
and the 4-point function. At the two-loop level only the cuts of the 4-point function have to be
considered, lying on a hyperbola in the complex q1 plane, as illustrated in fig. 1. Performing the
contour integration along the dashed line, we obtain two terms, one from the residuum of the pole
Ip and the other from the integral along the new integration path. The latter contribution vanishes
as we push the integration lines to infinity, except for the one along the cut, to be denoted by Ic in
the following,

Σ(1) = Ip + Ic . (3.5)

Along the lines discussed in [1], the former leads to the resummed asymptotic formula

Ip =
M2

π
16π2λπ

∞

∑
n=1

m(n)√
n

∞
∫

−∞

dy Fπ(iy)e−
√

n(1+y2)λπ , (3.6)

with Fπ (iy) the ππ-forward-scattering amplitude. Restricting the sum to the first addend, we
recover Lüscher’s formula, eq. (1.1). Its extension to eq. (3.6) has already been suggested in [14,
16]. Numerically, the resummation turns out to be relevant for moderate λπ .

Concerning the contributions of the cut Ic, we make use of a dispersive treatment. As these
terms only start at the two-loop level, they are both suppressed in the chiral as well as in the large
L expansion and are therefore expected to be small. This is exactly what we observe numerically.

3.3 Self-energy to 2’nd order: Σ(2)

Contributions from two pion propagators in finite volume are finally captured in Σ(2). Notice that
the corresponding Feynman diagrams are uv-finite and need not to be renormalized. Therefore, it
only remains to find a feasible numerical representation for these terms.

4. Numerics

The numerical analysis is performed in line with the setup of Ref.[16]. In fig. 2, we evaluate the
relative finite volume shift

RMπ ≡ MπL −Mπ

Mπ
, (4.1)
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Figure 2: RMπ = MπL/Mπ −1 vs. Mπ for L = 2,3,4fm. For explanations of the legend, see text.

for L = 2,3,4 fm as a function of Mπ . We show the one-loop (LO) as well as the two-loop result
(NLO). These shall be compared with the resummed asymptotic formula eq. (3.6) with LO/NLO/
NNLO input for the ππ-scattering amplitude. Note that the one-loop result and the resummed
asymptotic formula to LO agree with each other. The best estimate for RMπ is finally obtained by
adding to the asymptotic pure three-loop contribution the two-loop result (NNLO asympt. + NLO
non-asympt.). At NLO, the finite size effects encounter low energy constants, leading to a non-
negligible error band which is only shown for the best estimate. We take up a point already alluded
in the introduction, namely the large contributions when going from LO to NLO in the asymptotic
formula (dotted to thin-dash-dotted). Compared to this gap, the additional contributions from the
full two-loop result (thick-dash-dotted) are very small. Consider eg. a pion mass of Mπ = 250 MeV
in a 2 fm box. We find RMπ = 0.0236(41), of which 0.0010 stem from the two-loop corrections
which are not included in the asymptotic formula. The two-loop and the NLO result from the
asymptotic formula only drift away, when we go beyond the region where the p-regime can be
safely applied.

5. Conclusions

We have evaluated the finite volume effects of the pion mass to two loops within ChPT in the p-
regime. The results are compared with a recently proposed extension of the asymptotic formula of
Lüscher. We find that contributions which were neglected in the latter, are numerically very small
at the two-loop level and conclude that the resummed asymptotic formula is a convenient method
to evaluate the finite volume effects beyond the leading order.
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