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We search for the standard lattice resonance signature of attraction between the resonance con-

stituents which leads to a bound state at quark masses near the physical regime. We study a

variety of spin-12 interpolators and for the first time, interpolators providing access to spin-3
2 pen-

taquark states. In looking for evidence of binding, a precise determination of the mass splitting

between the pentaquark state and its lowest-lying decay channel is performed by constructing the

effective mass splitting from the various two-point correlation functions. While the binding of the

pentaquark state is not a requirement, the observation of such binding would provide compelling

evidence for the existence of theΘ+ pentaquark resonance. Evidence of binding is observed in

the isoscalar spin-32 positive parity channel, making it an interesting state forfurther research.
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1. Introduction

We present the results of our search for the exoticΘ+ pentaquark resonance, which has
strangeness +1 and minimal quark contentuudds̄. Since the spin, parity and isospin of theΘ+

remain open questions, we have explored [1, 2] a wide space ofquantum numbers using an exhaus-
tive array of interpolating fields, including for the first time a study of theΘ+ as a possible spin-3/2
state [2]. Key to this work is the formulation of a robust resonance signature in lattice QCD that
can distinguish a resonance from possible scattering states. The volume dependence of the residue
of the lowest lying state has been proposed as a way to identify a resonance [3, 4]. Alternatively,
hybrid boundary conditions, i.e. choosing a different boundary condition for theu,d-quarks com-
pared to thes-quark, have been proposed in Refs. [5, 6, 7] to differentiate the resonance from a
scattering state. Our method, which is complementary to these approaches, is to look for sufficient
attraction between the constituents of the pentaquark state such that the mass of the pentaquark
state is less than the energy of the corresponding free decaychannel. We refer to this in [1, 2]
as the “standard lattice resonance signature” in lattice QCD because we have universally observed
this behaviour at the quark masses that have been consideredin studies of conventional baryons
[8, 9, 10, 11, 12].

In Sec. 2 we present the details of our lattice simulation. InSec. 3 we present our analysis of
the even and odd parity, spin-1/2 and spin-3/2 pentaquark states, in both the isoscalar and isovector
channels. As we will see there is clear evidence of the standard lattice resonance signature in the
I(JP) = 0(3/2+) channel. As we conclude in Sec. 4, this 0(3/2+) state is a worthy candidate for
future study of theΘ+ pentaquark in lattice QCD.

2. Lattice Details

2.1 Lattice Simulations

In our analysis we use a large 203×40 lattice. Using the mean-fieldO(a2)-improved Luscher-
Weisz plaquette plus rectangle action [13], the gauge configurations are generated via the Cabibbo-
Marinari pseudoheat-bath algorithm with three diagonal SU(2) subgroups looped over twice. The
lattice spacing is 0.128(2) fm, determined using the Sommerscaler0 = 0.49 fm. For the fermion
propagators, we use the FLIC fermion action [14], anO(a)-improved fermion action with excellent
scaling properties providing near continuum results at finite lattice spacing [15]. A fixed boundary
condition in the time direction is implemented by settingUt(~x,Nt) = 0 ∀~x in the hopping terms of
the fermion action, and periodic boundary conditions are imposed in the spatial directions. Gauge-
invariant Gaussian smearing [16] in the spatial dimensionsis applied at the fermion source att = 8
to increase the overlap of the interpolating operators withthe ground states. Six quark masses are
used in the calculations, withκ = {0.12780,0.12830,0.12885,0.12940,0.12990,0.13025} pro-
viding amπ = {0.540,0.500,0.453,0.400,0.345,0.300}. The strange quark mass is taken to be the
third largest (κ = 0.12885) quark mass. Thisκ provides a pseudoscalar mass of 697 MeV which

compares well with the experimental value of
√

2M2
K −M2

π = 693 MeV motivated by leading order
chiral perturbation theory. The error analysis is performed by a second-order, single-elimination
jackknife, with theχ2 per degree of freedom obtained via covariance matrix fits. Further details of
the fermion action and simulation parameters are provided in Refs. [14, 15].
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2.2 Interpolating Fields

In this section we review the interpolating fields that we usein our pentaquark studies. The
two general types of pentaquark interpolating fields we consider are those based on an “NK” con-
figuration (eithernK+ or pK0), and those based on a “diquark-diquark-¯s” configuration. Below is
a summary of the interpolating fields we use that only couple to spin-1/2 states,

χNK =
1√
2

εabc(uTaCγ5db){uc(s̄eiγ5de) ∓ (u↔ d)}

χÑK =
1√
2

εabc(uTaCγ5db){ue(s̄eiγ5dc) ∓ (u↔ d)}

χPS = εabcεae fεbgh(uTeCdf )(uTgCγ5dh)Cs̄Tc

χSS =
1√
2

εabc(uTaCγ5db)(uT cCγ5de)Cs̄Te , (2.1)

For χNK andχÑK, the− and+ corresponds to the isospinI = 0 and 1 channels, whileχPS andχSS

access isoscalar and isovector states respectively.
In addition to these fields we have also considered anNK∗-type field that couples to both spin-

1/2 and spin-3/2 states and we propose to study a diquark-diquark style field, similar to that used
in [7], which couples to both spin-1/2 and spin-3/2 states, including isovector states,

χ µ
NK∗ =

1√
2

εabc(uTaCγ5db){uc(s̄eiγµde) ∓ (u↔ d)}

χ µ
VS = εabc(uTaCγ5γµdb)

{
(uTcCγ5de)∓ (uTeCγ5dc)

}
Cs̄eT , (2.2)

where the− and+ corresponds to the isospinI = 0 and 1 channels, respectively. To project states
of definite spin from the correlation function we apply the spin projection operators [10],

P
3
2

µν(p) = gµν −
1
3

γµγν −
1

3p2 (γ · pγµ pν + pµγν γ · p) ,

P
1
2

µν(p) = gµν −P
3
2

µν(p) . (2.3)

2.3 Lattice Resonance Signature

The presence of binding at quark masses near the physical regime has been universally ob-
served in our studies of nucleon resonances and is central tothe study of the electromagnetic
properties of decuplet baryons [17] and their transitions [18, 19, 20] in lattice QCD. In Fig. 1 we
show the spectrum of nucleon and∆ resonances [9, 10]. The solid curve is the S-WaveN+π decay
channel energy corresponding to the 1/2− and 3/2− states which clearly become bound, i.e. the
mass of the resonance becomesless than its decay channel energy, at the quark masses shown.
This what we refer to as the standard lattice resonance signature of binding at quark masses near
the physical regime. Note that the 3/2+ state also becomes bound as it decays to a P-WaveN+ π
(not shown), which due to finite volume effects is at a higher energy than the S-WaveN+ π.

To search for evidence of theΘ+ we require a precise measurement of the splitting between the
mass of the pentaquark state and the free decay channel energy. Hence we define an effective mass
splitting where both correlated and systematic errors are minimised. For example in an S-wave
decay channel,

∆Meff(t) ≡ Meff
5q (t)− (Meff

B (t)+Meff
M (t))
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Figure 1: Summary of nucleon resonances [9, 10], the solid curve is themass of the S-WaveN+ π decay
channel corresponding to 1/2−,3/2− parity states.

t→∞
= m5q− (mB+mM) , (2.4)

whereMeff
B (t) and Meff

M (t) are the appropriate baryon and meson effective masses for a specific
channel. In the case of a P-Wave decay channel, the effectivemasses of each decay constituent
is combined with the minimum nontrivial momentum on the lattice, 2π/L, to create the effective
energyEeff(t) =

√
(Meff(t))2 +(2π/L)2.

3. Results

In this section we present a summary of the findings from our studies of theΘ+ pentaquark.
In Fig 2 we present a summary of our most relevant results. We find that the negative parity states,
spin-1/2 and spin-3/2, isocalar and isovector are more massive than their respective decay channels.
While this does not necessarily exclude the existence of theΘ+ pentaquark, Mathur et al. [3] have
shown that the 0(1/2−) is indeed aN+ K scattering state. Its mass is shifted higher than the free
decay channel energy, due to finite volume effects, and this shift can be related to the scattering
length for which we find values the order of−1 fm with a trend towards the experimental value. In

Figure 2: A summary of results extracted with spin-1/2 and spin-3/2 pentaquark interpolators.
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the spin-1/2, positive parity channel we found that the massof the pentaquark states are consistent
with their decay channel energies.

Our most striking observation of the standard lattice resonance signature is in the 0(3/2+)

channel, which shows evidence of binding at quark masses near the physical regime and also dis-
plays the appropriate approach to the limit of very heavy quark masses that one expects for a five
quark state based on quark counting rules.

Figure 3: The masses of the 0(3/2+) (left) and 0(1/2+) (right) pentaquark states minus the P-WaveN+K
decay channel energy.

Figure 3 shows the masses of the 0(1/2+) and 0(3/2+) pentaquark states minus the P-Wave
N+K decay channel energy. The physical mass of theΘ+ minus the physical P-WaveN+K decay
channel energy, adjusted for our finite volume lattice, is displayed for comparison. The standard
lattice resonance signature is seen in the 0(3/2+) channel, whereas existence of binding in the
0(1/2+) channel remains inconclusive due to large statistical uncertainties.

4. Conclusions

We have completed a comprehensive analysis of the isospin and parity states of the spin-1/2
and spin-3/2 pentaquark. We find no evidence of the standard lattice resonance signature for nega-
tive parity spin-1/2 or spin-3/2 states. Due to large statistical errors we could not determine if there
exists evidence of binding in the positive parity spin-1/2 channel. However, in our examination
of 0(3/2+) pentaquark state we have discovered evidence of the standard lattice resonance signa-
ture making it a prime candidate for future study. An analysis of the volume dependence of this
signature to determine if it suggests the existence of theΘ+ pentaquark remains as future work.
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