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1. Introduction

Within the framework of Symanzik’s improvement programme [4, 5] the emplirasadtice
QCD has been on the construction and testing of fermion actions to &(eidlattice spacing
artefacts. Since the lattice artefacts induced by the gauge action sta@(afth the need of also
exploring different gauge actions has not been considered as eqgugdiyit. However, although
this point of view is certainly valid in the asymptotic regime of small lattice spaaijrige situation
is different when values of the lattice spacing, say, 0.1 fm are considered. In this region higher
order lattice artefacts my play an important role.

In the case of Wilson fermions the explicit breaking of chiral symmetry le@lds the appear-
ance of a strong first order phase transition that severely affectaitherical simulations [7, 8].
As we will demonstrate in this contribution, the choice of the gauge action canahstrong effect
on the strength of this phase transition and therefore it becomes importandiole@oboth, the
fermion and the gauge action to find a suitable lattice QCD action for simulationgnahdcal
quarks.

The twisted mass fermions approach [9] provides, among other advanthgadeal frame-
work for the investigation of the zero-temperature phase diagram of lati@e ®ith Wilson
fermions, see refs. [10, 11, 12] for reviews on twisted mass fermionseisept and past con-
ferences.

Our present understanding can be summarized as follows, see also Fgr talues of the
lattice spacing much coarser thas= 0.15 fm an unphysical phase appears for small quark masses,
the Aoki phase [13, 14, 15]. The transition from the standard lattice Q@i3¢to the Aoki phase
is of second order: here the charged pions become massless. Thphaski only extends in the
untwisted quark mass direction being absent for non vanishing twistel messu. For smaller
values of the lattice spacing a first order phase transition appearslfg, 87], this time extending
in the twisted mass direction. The phase transition occurs at vanishing (untwisted) quark mass
and separates the phases with opposite signs of the quark mass. Thisd&rsphase transition
is reminiscent of the continuum phase transition when the quark mass isech&tng positive
to negative values with the corresponding jump of the scalar condendhie asler parameter of
spontaneous chiral symmetry breaking. The generic phase structatdéad QCD was discussed
inrefs. [7, 8, 16].

The appearance of the first order phase transition has seriougjoenses, since in such a
scenario the pion mags; cannot be made arbitrarily small but assumes a minimal vaiﬂ;ﬂé‘
which may be about 500 MeV and hence it becomes impossible to work close fahsical
value of the pion mass. It therefore becomes important to understandabke ginucture of lattice
QCD as a pre-requisite before starting large scale simulations. Our caltadrohas performed a
detailed study of the phase diagram of lattice QCD. We used Wilson fermionsangttwithout
twisted mass parameter and studied the phase diagram as a function of thesjettice) for the
Wilson plaquette, the DBW2 and the tree-level Symanzik improved gauge sictiosm we will
show in this contribution, the strength of the first order phase transitionglyathe size ofrf,‘r“”,
depends strongly on the choice of the gauge action when comparablegblsjtsiations are tested.
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Figure 1: Current knowledge of the lattice QCD zero-temperature @ligsgram with Wilson fermions as
a function of the inverse gauge coupliig] 1/g?, the hopping parameterand the twisted mass parameter

.

Since lattice chiral perturbation theoryRT) [6, 18, 19, 20, 21, 22] predicts a weakening of the
first order phase transition toward the continuum limit, it is interesting to chéslptbdiction and,
in particular, to investigate how fast the transition weakens when the contilionit is approached.
The answer to the latter question will naturally depend on the choice of thensi¢hat are used
for the gauge and the fermion fields. Moreover, the predictiongR¥ for e.g. the quark mass
dependence of the pion mass and the pseudoscalar decay constahtapbase transition can be
directly confronted to results from numerical simulations.

This contribution is organized as follows. In section 2 we will give the defin#tiof the
actions we will use. In sections 3, 4 and 5 we will give our results for thedfvifdaquette, the
DBW2 and the tree-level Symanzik improved actions, respectively. Hioseé we will confront
our lattice data with latticg(PT. In section 7 we will provide first results from simulations with
Nt = 2+ 1+ 1 flavors of quarks. Finally, we will conclude in section 8.

2. Lattice action

The lattice action for a doublet of degenerate twisted mass Wilson fermionse(sothalled
“twisted basis”) reads

+4
S=2 {(Xx[ux +iysTaau]Xx) - % > (KUl + VH]XX)} : (2.1)

u==1

with p = amp+4r = 1/2k, r the Wilson-parameter, set in our simulationsg te 1, amy the bare
“untwisted” quark mass in lattice unitg {s the conventional hopping parameter) antthe twisted

quark mass; we also defihg , =U ;  andy , = —y,.
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For the gauge sector we consider the one-parameter family of actionsimgpldnar rectan-
gular (1 x 2) Wilson loops Uy;?):

4 1 4 1
%:Bz<co )3 {1—§Reuxlgvl}+c1 > {1—§Reuxlgv2} : (2.2)
X u<v;u,v=1 u#v;u,v=1
with the normalization conditiony = 1 — 8c;. We consider in this contribution the three cases: i.)
Wilson plaquette gauge actioty, = 0, ii.) DBW2 gauge action [23]; = —1.4088, iii.) tree-level
Symanzik improved gauge action (tISym) [2d{,= —1/12.

3. Wilson plaquette gauge action

The first action we investigate here is the Wilson plaquette gauge action. tiedsthe lattice
spacing dependence of several quantities [17] keeping the twisted nthdgedattice size roughly
fixed torgu ~ 0.03 (rp being the Sommer parameter [25], we assugne 0.5 fm throughout this
contribution) andL ~ 2 fm. We variedB = 6/g? in the rangeB = 5.1 - 5.3. For each value
of the hopping parameter we performed a hot and a cold start in orderetk ¢br co-existing
values of physical observables which we have chosen as the piommassl the rho meson mass
m,, extracted from the usual correlation functions. Another quantity is theitame f;’ S, which
reduces to the pion decay constdépfor u = 0, defined as

(0lAo(0)|m)

(0| (3.1)

Fap AP
fPS= 22(0|P(0)|m) = == where rap =
= m OPO)m = *gr, .
is extracted from the asymptotic behavior of the ratio of the axialvectordosealar correlator
Cap(Xo) to the pseudoscalar-pseudoscalar correl@tgsxo) (cf. ref [17] and references therein
for details): CL(X’? = raptanhmy(T/2—xo)] . Moreover we measure the untwisted PCAC quark

Crp(%0)
massm)F(’CAC:

o fESTR_tfSm .
X 200P(O)|m) 207 '

Note that the physical decay constant (PCAC quark mass) is obtaineddoytanation off)fS and
the twist anglew (m)P(CAC and the twisted mags), see also section 4.
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Figure 2: Lattice spacing dependence of the plaquette expectatitue vdleft) and the PCAC quark
mass (right).
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The plaquette expectation value shows the typical behavior at a first pldse transition
with meta-stable branches, illustrated in fig. 2 (left). For the PCAC quark thassvo branches
correspond to positive and negative quark mass, respectively gsex(fight)). In both cases the
gap decreases frofi= 5.1 to 5.3 and the meta-stability region ifnZk shrinks. For the pion mass
shown in fig. 3 (left) this fact has the important consequence that only a mipioramass~ 500
MeV can be reached. If one attempts to lower the mass further by tynimgk, a jump to the
other phase occurs. In addition, the scale paramgteris quite different in the two phases and its
mass dependence is non-negligible, as illustrated in fig. 3 (right).
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Figure 3: Pion mass vs. PCAC quark mass (left) and mass dependemggadfright) at3 = 5.3. “Low”
and “high” refer to the low plaquette (positive quark mass) ¢he high plaquette (negative quark mass)
phase, respectively.

In the light of these observations the interesting question arises at \@hietue or lattice
spacing we can safely simulate pions with masses as light230 MeV in order to make contact
with xPT. With the present data it is very difficult to make an extrapolation, since thex large
ambiguity in the determination of the minimal pion mass, the lever arm is very stetodioe small
range off3=5.1-5.3 covered and furthermore due to the large difference of the gammetery/a
in the two phases. Nevertheless, a qualitative estimate would be a lattice spf0i6F-0.1 fm,
where one should be able to reach small pion masses without being afigdtelfirst order phase
transition. This makes evdén= 2 fm simulations, e.g. for a detailed scaling study, very demanding.
Therefore alternative gauge actions that lead to a reduced strengthfimétiorder phase transition
are investigated in the next sections.

3.1 Scaling behavior

Here we study the scaling behavior with our current data for the Wilson etegaction, also
including the data from the DBW?2 gauge action, see sec. 4. To this endpressxthe physical
quantities in dimensionless variables. We first define a reference quaskby@omy)? = 1.5. At
this reference quark mass, we then determmeérence values for the quantities we are interested

in, i.e. ro/a, MySA%, my, m, and 7S, This allows to define dimensionless ratios such as for
mPCAC

the quark massg = W or other observablefo = %

X re ref

f
measured in units of their reference values, are universal and camigared at differer-values
and for different actions.

. The so determined observables,

*We consider only the positive quark mass phase which correspondsittasd lattice QCD.
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Figure 4. Scaling ratiost)p(:s in the quenched approximation (upper panel) and for dynamic
fermions (lower panel). The lower panel also includes tesinbm the DBW2 action a8 = 0.67 and
B =0.74 (see also sec. 4).

In fig. 4 (lower panel) we show as an example the scaling ratio for oundigahfermion data
of the Wilson plaquette and the DBW2 gauge actions. We observe no scaiagons for the
data from the Wilson plaquette gauge actiorBat 5.1 — 5.3 within the (large) statistical errors.
Moreover, we see agreement with datgat 5.6 for pure Wilson fermions without twisted mass,
produced for the algorithmic study of an HMC variant [26, 27]. For tha lam the DBW2 gauge
action at smaller masses we observe instead a slight difference in the drisgor of theu = 0
and u # 0 results. This might indicate that such a difference could be detectededivilson
plaquette gauge action only at higher beta values, where smaller quarkstass be reached.
Similar plots were also obtained for the scaling ratg and my/my. For comparison, we also
show in fig. 4 (upper panel) an example of the rﬁt}gs for quenched data at full twisk, = K¢ [28].
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Here we observe scaling violations for our coarsest latti@@-a6.7 and a difference in the scaling
behavior at small masses for different discretizations of twisted mass fesnmealized by using
two definitions of the critical masx€°" andk”CAC, see ref. [28]). This might provide a warning
that at small values of the quark mass the lattice artefacts could be signdicdrihat scaling
violations might show up.

4. DBW?2 action: analysis of twist angle and physical quantigs

In this section we analyze several interesting quantities in the context of siomslafNs = 2
flavors of twisted mass fermions with the DBW2 gauge action. This particulap seas studied
in[16] on a 12 - 24 lattice ai3 = 0.67 with spatial extensioh ~ 2 fm, lattice spacing~ 0.18 fm,
rod ~ 0.03: the minimal pion mass found here wag ~ 360 MeV. Signs of metastabilities are
hardly detectable in this situation, which is a clear improvement compared to thenilsquette
gauge action, cf. sec. 3. In this section we also consider data frén828attices at a finer value
of the lattice spacing3 = 0.74, keeping approximately the same volume and value of the twisted
quark mass as in the aforementioned simulations.

4.1 Twist angle

The twist anglew defines the chiral rotation relating twisted mass QCD to ordinary QCD. In
the case of the chiral currents the rotation reads (considering onlgeshaurrentsa = 1, 2):

V2, = ZyVg, cosw + EapZahl), sinw (4.1)
A2 = ZpAZ, cOSW + EapZy V), SINW (4.2)

where the hatted currents on the I.h.s. denote the chiral currents of Q@Bi¢al currents), while
the currents on the r.h.s. are the corresponding bilinears of the qe&thkdfithe twisted x-) basis.
Note that the renormalization constants of these bilineadrsandZa, are involved. For a given
choice of the lattice parameters, the twist an@lés determined by requiring parity conservation
for matrix elements of the physical currents [8, 16]. Since unknownrmealization constants are
involved,two conditions are required, our choice being:

;<\7x0 R)=0, (4.3)
;<A+i\7y7> =0. (4.4)

The solution of egs. (4.3) and (4.4) with egs. (4.1) and (4.2) gives atdietermination of the
twist anglew and of the ratidZa /2y from lattice data, see [16] for details. Eq. (4.3) implies e.g.

. ZV o ZX<% Py_>
cotwy = Z cotw = —i m . (4.5)

In particular at full twist whereo = 11/2 the condition read{(Ajo R ) =0 or cotwy =0. The
X

full twist situation can be also obtained by requiring the vanishing of the PQue@k massn, “AC.
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One can easily see that using the PCAC quark mass as a criterion for fuljustimmounts to a
different definition of the twist angle: the current is replaced by its digece in (4.3). So the two
criteria are equivalent and differ (at most) @ya) effects. The numerical equivalence of the two
criteria for full twist is illustrated by fig. 5.

5————T——T——T————T—0.05 5——1——1——T———7——T————0.05
4 B=067 a1=001 ~0.04 4 p=074 q1=0.0075 ~0.04
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Figure 5: Determination of the critical hopping parameskgicorresponding to full twist by parity-restoration
and by extrapolating to zero the untwisted PCAC quark nmﬁ%*c. The small discrepancy observed at
B = 0.67 (left panel) between extrapolations from positive anghtige quark masses is probably a residual
effect of the first order phase transition (crossover). et 0.74 (right panel), extrapolations from both
sides give consistent results.

4.2 Physical quark mass and pion decay constant

The knowledge of the twist angle is necessary for the determination oigathgsiantities like
the quark mass and the pion decay constant.physicalPCAC quark massﬁCAC can be obtained
from the Ward identity for the physical axialvector current:

(05 AR ) = 2mEC*CRIR)) (4.6)
From egs. (4.1) and (4.2) follows
A2, =V, cotw + &V, (Sinw) (4.7)

where the conserved vector current ofmeldsvxtil has been now considered, for whigh = 1.
Inserting the above result in the Ward identity (4.6) and using parity régtorfor the physical
currents one obtains:

OV R
meAC= —i(2 sinw)*1<“+¢fy> = Za(cosw) tmSAC. (4.8)
(R'R)
Analogously, for the physical pion decay constéptve use
fr = mHO|AG (0)] ") = —i(mysine) (0N (0)| ") . (4.9)
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Table 1: Chiral extrapolation i(f*“ = 0) of the Sommer scale parameterand
pion decay constarft;; the scale independent combinatifyrg is also reported. Only
data with positive twisted quark masses have been usedd@xtnapolations, with the
exception of the point near full twist at=7.5-103.

B u ro/a a(fm) afq frlo
0.67 10-102 2.680(68) 0.1866(72) 0.1171(59) 0.320(10)
0.74 75-103 4.11(13) 0.1216(39) 0.0726(25) 0.309(15)

In fig. 6 the pion decay constant is plotted as a function of the quark massifttulation points
for negative quark masses are not included). The figures also sleodetbrmination off,; by
the axialvector current: a formula similar to eq. (4.9) applies in this case, where however
the factor ¥ sinw is replaced by Acosw. In the interesting region near full twist this factor
introduces the large fluctuations in the estimatd pbbserved in the data. Moreover in the case
of A%, the decay constant has not yet the right normalization of the continuusi; factor is
missing. In the case of the conserved vector current on the contratattioe determination
of f; has automatically the correct normalization [29, 30]. If we exclude the ligipeist at

B = 0.67, which is likely to be under the influence of residual metastability effdgtseems to
be characterized by a linear dependence upon the quark mass. Omsitheflihis observation we
try a simple linear extrapolation to the chiral Iim'rG’CAC: 0, see table 1 for the numerical results.
(Of course deviations from this linear behavior could be present fotdigjuark masses, where
chiral logarithms might play a role.) We see that the fivaalues give compatible values fégrg,
suggesting that there are no large scaling violations for this action. Tlasesy obtained with
N¢ = 2, are also near to the physical valfygo = 0.33.

0.2 ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T ‘ L ‘ L ‘ L ‘ L ‘ L ‘ L
[ 3=0.67 au=0.01 ] =0.74 au=0.0075 g
L ] L o |
018~ o af [A] ® 7 012 O af[A] }
[ o af V] ] o af_[V] i
0.16F - 1
[ ] o & 4
L g 0.1 K 7
0.14 — [ )
0.12- - 0.081- ]
01 TL . :
el ISR B o e Ly 1 g 111111l111111111111111111111111A
0 0.01 0.02 0.03 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03
PCAC
am aquCAC

Figure 6: The pion decay constaffif; as a function of the PCAC quark maséCAC.
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Table 2: The renormalization constanfy, Z, at full twist (extrapolating from posi-
tive quark masses) with comparison to 1-loop perturbativerates (PT) and tadpole-
improved perturbative estimates (TI)[32].

B u Op. z Z(PT) Z(T))

0.67 10-102 V 0.5650(11) 0.6089 0.6531
0.74 75-10% V 0.6217(23) 0.6459 0.6892
0.67 10-102 A 0.952(30) 0.7219 0.7176
0.74 75-10% A 0.944(74) 0.7482 0.7735

4.3 Renormalization constants

The renormalization constant of the vector curréptcan be determined on the basis of the
non-renormalization property of the conserved curﬁth[Sl]. In the case of twisted mass QCD

we use -
i (O] )

YoV )
Note that in twisted mass QCD the time-component of the vector current couplesahum to the
pseudoscalar meson: in the most interesting region near full twist this cgugl{in our twisted
basis) maximal. In lattice QCD with ordinary Wilson fermions the analogous gueéhas to rely
on the noisier matrix element of the vector particle. Eq. (4.10) representsadependent pre-
scription. We obtain a mass independent determinatiaty diy extrapolatingZ\',att to full twist. In
this situation the theory i©(a) improved and/ has onlyO(a?) lattice deviations. (In particular
residualO((pa)?) terms can be eliminated by@a— 0 extrapolation.) The results are reported
in table 2; the renormalization of the axialvector currggtis also reported: this is obtained by
combining the direct determination @, (4.10) and the determination &k /2, from the parity
restoration (see above) after extrapolation to full twist. Observe thatahéitons (4.3), (4.4)
hold in general up t®(a) parity violations: imposing (as we do) exact parity restoration for the
considered m.e. leads to a mass dependent determination of thEy&fip.

(4.10)

5. Tree-level Symanzik improved gauge action

In this section we will now concentrate on the tree-level Symanzik improvegnii$auge
action for which the coefficierd; = —1/12. The reasons for the choice of this action are manifold
— firstly, the action is designed to show a good and smooth behavior in theljzita regime;
secondly, in many quenched scaling studies the action has proved teehgékhalso in the non-
perturbative regime; and thirdly, the additional coefficienis rather small in absolute value as
compared to other improved actions like the DBW2. We have simulated seatuab\wofk close
to K¢, i.e. close to maximal twist, at three different valuegafsing a HMC algorithm variant with
mass preconditioning and multiple time scale integration [26, 27].

In order to check for a possible phase transition and correspondingtatgtdies we measure
the average plaquette value as a function of the hopping pararmeteruns with hot (disordered)
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and cold (ordered) starting configurations. Since the metastability, if dlhghew up aroundk,
we concentrate our hot and cold runsrowalues closest te; only. Fig. 7 (left) shows the results
for the average plaquette value for our coarsest lattige-at3.65,12% - 24 androu = 0.038. Here
and in the rest of the section the red circles and blue squares repifeseasults from the hot and
cold starts, respectively. From fig. 7 (left) it is clear that there seemsno baetastability as far as

0.56

0.555— e 0555
0.551~ 8 - 055

0.545— — 0.545]

average plaquette
av. plag.

0.54— 8 T 0.54

0.535— - 0.535

%l I | I | I | I | L | I | I | I | I
o'%‘.’isg 0.17 0.171 0.172 0.173 0 500 1000 1500 2000 2500
K MC time

Figure 7: Left panel: Average plaquette value vsat B = 3.65,rou = 0.038 on a 13- 24 lattice from
hot (red circles) and cold starts (blue squares). Right IpaPlaquette MC time history for two runs at
B = 3.65rou = 0.038 k = 0.17024 on a 12- 24 lattice starting from hot (red line coming from below) and
cold configuration (blue line coming form above).

the plaquette value is concerned, but the existence of a phase transitimptrameter set can of
course not be excluded. Indeed, the rise of the plaquette value axgun@.17025 points toward
the fact that we are at least in the vicinity of a phase transition and we acmnthat a lower value
of u would hardly be possible to simulate in practice. The vicinity of the phase tramsstialso
reflected in the MC time histories of the plaquette value. We observe a raibryg stitical slowing
down leading both to a very slow thermalization and large fluctuations of thegttegvalue over
several hundreds of trajectories. It is evident from the MC time histoowalin fig. 7 (right) that
any statement about the plaguette value itself as well as any error estimageyeddficult to make
and should hence be taken with care. The figure also illustrates the fastrthdations close to
or atk. (i.e. at maximal twist angle) are rather difficult, at least at such large safithe lattice
spacing &~ 0.13 fm) and values oft as chosen here.

Let us now move to our simulations Bt= 3.75. Fig. 8 (left) shows the average plaquette
value vs.k at 3 = 3.75,rou = 0.020 on a 13- 24 lattice from hot (red circles) and cold starts
(blue squares). Compared to fig. 7 we are now at finer lattice spagif@-£ 3.76(9) at 3 = 3.65
vs.ro/a=4.1(2) at f = 3.75), but on the other hand also our value of the twisted mass is halved,
so we do not necessarily expect the situation to be better. Indeed, wthéindt the value of
k = 0.1660 that is closest t&. the average plaquette value from the hot and the cold start do
not match each other, which is pointing to the existence of a phase transitiencamcesponding
metastability at this set of parameters. On the other hand, considering tbeefllastyations of
the plaquette similar to the ones in fig. 7, the runs here are presumably natrongh to allow
reliable estimates and the metastability might disappear as the MC time history becoges lo
Nevertheless, the strong rise of the plaquette arogmbints toward the fact that we are at least
close to a transition, even though the rise appears to be much weaker fhanZ5.
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Figure 8: Left panel: Average plaquette value wsat 3 = 3.75,rou = 0.020 on a 12- 24 lattice from hot
(red circles) and cold starts (blue squares). Right panetraige plaquette value vs.at 8 = 3.90,rou =
0.041 on a 18- 32 lattice from hot (red circles) and cold starts (blue sgsjr

The situation a3 = 3.90 is illustrated in fig. 8 (right) whereyu = 0.041 corresponds again
to our larger value ofi. Here we observe a very smooth dependence of the plaquette value on
and there seems to be no trace of a cross-over or even a nearbytiainageon. (We attribute the
fact that the plaquette value mt= 0.1610~ k. from the hot and cold start do not match exactly to
the shortness of our runs which prevents an accurate determinationaveifage plaquette value.)

Next we consider the untwisted PCAC quark ma§§”C, cf. eq. (3.2), as a function of for
B =3.75 and 390 in fig. 9. ForB = 3.75 (left) we find that the mismatch between the plaquette

0.06—

0.04—

0.02—

PCAC

0

©

PCAC

£°

<

-0.02—

-0.04—

-0.06—

b

am

| I
0.165

| I | I | I
0.1655 0.166 0.1665
K

| I
0.167

0.1675

0.06

0.04—

0.02—

~ 0

-0.02—

-0.04—

-0.06

|
0.159

1 | 1
0.16 0.161 0.162
K

Figure 9: Untwisted PCAC quark mase,“"Cvs. k from hot (red circles) and cold starts (blue squares). At
B = 3.75,rou = 0.020 on a 13- 24 (left plot) andB = 3.90,rou = 0.041 on a 18- 32 lattice (right plot).

value from the hot and the cold startrat= 0.1660~ K is also reflected in the PCAC quark mass,
although we expect that this mismatch will eventually go away for long enoughasi discussed
before. Nevertheless, even then it seems unlikely that extrapolatimi}cﬁ‘}: 0 from k-values
above and below, will coincide. This is in contrast to the situationfat= 3.90 (right plot) where
we observe a smooth dependencernﬁ?AC on K throughout a wide range &f-values. Indeed,
extrapolations tcm)F;CAC = 0 from k-values above and below nicely coincide while the slopes
are different (in consistency with expectations frgT [18, 19, 20, 21, 22]).

Let us now turn to the pion mass squarefi as a function of the PCAC quark masg§-AC
which we plot in fig. 10 forB = 3.75,rou = 0.020,12%- 24 on the left and fo = 3.90,rou =
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0.041,16°- 32 on the right. AtB = 3.75 the pion mass that is realizedrags = 0.020 ism;,; =
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Figure 10: Pion mass squarea? vs. PCAC quark massix”“A€ from hot (red circles) and cold starts
(blue squares). AB = 3.75,rou = 0.020 on a 13- 24 (left plot) andB = 3.90,rou = 0.041 on a 18- 32
lattice (right plot).

353(22) MeV for the hot start and,; = 382(33) MeV for the cold start, son; ~ 370 MeV seems
to be a good estimate for the minimal pion mass that can be reached at this parsgheteor
additional simulations at the sarfiebut on a larger volume $632 atk ~ k. androu = 0.039 we
obtainmy; = 407(16) MeV. Finally, atf3 = 3.90 the pion mass we reachrap = 0.041 ism; =
453(32) MeV, while an additional simulation at~ k; androu = 0.020 givesm,; = 27937) MeV.

6. Chiral fits

The extension ofPT to the case of adding a twisted mass term was considered in refs. [33,
18, 19, 20, 21, 22]. For the low-energy constants in next-to-leadidgrg84, 35] we use the no-
tation Lsg = 2L4 + Ls, Lgs = 2Lg + Lg, Wea = 20y +Ws, Weg = 206 +We, W = 3 (Was — 2Lgg),
W = %(VV54— Lsa) where theL; are the Gasser-Leutwyler coefficients and ¥ieare the corre-
sponding coefficients of th®(mya) corrections. We consider the dependence of lattice quantities
on the untwisted PCAC quark mas§“*%, so we defing(pcac = 2Bo 5" where we explicitly
express thatf,“*C is renormalized in some prescriptionf 5% = ZnZ, mF’CAC We also define

the combination containing the physical quark mgss 2By, /( m;%AC)2+uR with ur = ZFj u.
Defining p = 2Wpa, whereW is the low-energy scale fdd(a) breaking (analogous t8y), Fy the
pion decay constant in the chiral limit, adthe renormalization scalg;PT at next-to-leading
order withO(a) corrections gives:

M = X+ ey ZFZX In X Fz{( Lsa+ 2Lge) X°+ 2(W —W)p Xpcach (6.1)
frR 1 =~ )? - Xecac
— =1-———=xIn5+={L 2Wp ZPCAC 6.2
. 16n2F02X n/\2+F02{ 54X +2Wp =2 } (6.2)
OnR 1 v )? 4 v Y XIéCAC
IR g2 an X S lgra AW — 2W)p Xeezey 6.3
FoBo 327_[2':02)( n A2 + Foz{( 54+ 4Llge) X + ( )P X } (6.3)

We set\ = 4.
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We performed a combined chiral fit of the quantitie’ f, andg; for our data from the Wilson
plaquette and the DBW?2 gauge action (including three and two difi@-emaiues, respectively, see
sec. 3 and 4) in order to obtain estimates for the combinations of coeffitigntsss, W, W and
of the low-energy constanBy andFy. In fig. 11 we show the result of this global chiral fit for the
case of the pion mass, for the Wilson plaquette action (left) and the DBW2 dditin). In the
former case three values Bfare included.

Pion Mass, B=0.67, au,=0.01
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Figure 11: Chiral fit of the pion mass: Wilson plaquette action (leftfldBW?2 action (right). In the Wilson
case a darker blue tone corresponds to a larger valfe of

The general observation is that lattig®T theory formulae reproduce rather well the lattice
data. TheD(a) terms of the chiral expansion are in general not dominant in the fits, whieltan
infer from the fact that the associated coeffiecients fluctuate with largatams around zero. This
is probably due to the use of the PCAC quark mass which in past expesibaseshown to have
reduced lattice artefacts compared to thiak.definition of the bare quark mass. In fact fig. 2 (right
panel) shows the presence of large lattice artifacts.

The use of different setups for the fits (different sets of data-poimtsations, independent fit
methodologies) allowed to test the stability of the results for the low-energgtaois. Combining
all information, we get the following ranges (here we fix the lattice scale yguke chiral-
extrapolated value of the Sommer scafe Fo = 70— 100 MeV,By/Zp = 3— 6 GeV,Lss = (0.8—
1.8)-1073, Lge = (0.5—1.0) - 10~3. As mentioned, the coefficients of tia) terms could not be
determined.

7. Ny = 2+ 1+ 1 flavors of twisted mass fermions

In this section we consider simulations of QCD in the twisted mass setup includirttythe
namics of thestrange(s) andcharm(c) flavors. Theu andd quarks, which are degenerate, are still
described by the action (2.1).

7.1 Split doublet

The mass-splitting in the charm-strange Gector is realized by adding an extra mass-term [36]
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in the action for a doublet of degenerate twisted mass fermions:

+4

=3 {(7§s[uﬁs+iV5T3aucs— nagl X - 5 > (Xabalr+ vu]xX“)} SN (A
X U=

where we use the same notation as in eq. (2.1), in partigiifae anf®+ 4r = 1/2kcs. The new

term with coefficientus (the minus sign is conventional) is responsible for the splitting. This

construction preserves reality and, fof > ug, positivity of the fermionic determinant. The

particle content of the theory is more transparent in a different basis whe- exp{i} 12} Xx,

Xx — )?Xexp{—igrz}, where the mass term in the untwisted direction is diagonal and the twist is

in the 11 flavor direction:

S

.mass— Z X [+ T3als + i ysTiakleg Xy - (7.2)
X

In analogy with the degenerate case the “average” quark mass of thdahitet is given by (we
neglect here for simplicity renormalization factonsy = +/(m§®— m§S, )2 + Hes? and the individual
masses byne s = mes £ . At full twist:

My =My = Hud, Mec= Hes+ M5, My = Hes— s - (7.3)
7.2 Tuning to full twist

Tuning to full twist theN; = 2+ 1+ 1 theory looks apparently more complicated because of
the presence of two tunable variabha§d andm® (or hopping parameters,q andkcs) with their
respective critical values. This problem can be however circumventadgsirategy analogous to
theN; = 2 case.

As we have seen previously in this contribution for tie= 2 theory, one possible definition

of the critical quark masBy (go, 1) is given by the vanishing of the corresponding PCAC quark
massm; A€, Due to chirality breaking the latter gets shifted:

mi A = my—a *f(go,amv, ap) (7.4)
with f a dimensionless function. On the basis of the symmetry of the action under paty—
— W) one can show that the additive renormalization of the quark mas®isn u, and analyticity
in turn implies
f(go,amy,ap) = f(go,amy) + O(u%a%) , (7.5)
where f (go, amy) is the shift for ordinaryNs = 2 QCD without twisted mass term. So the twisted
mass term in the action only produces@(a) effect on the quark mass (witlh andmy held fixed):

mAC = mo —a~* f (go,amy) + O(a) . (7.6)

The above argument can be easily generalized tdNthe 2+ 1+ 1 theory. Here one has to make
a distinction between the two sectors:

m)F()((:UAaC): = rnldd B a_l fUd(QOa aﬁgd’ anﬁs7 al-'luda aIJCSa al'l6) 9 (77)
MRCAC = g — afes(go, anty, amb, ajics, ajtug, ajts) - (7.8)
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The functionsfyq and fes are in this case even ipyg, Hes and ps': similarly to Ny = 2, the
associated terms in the action only affect the additive renormalization of tr& quass byO(a)
terms. So we write:

e =MbY —af(go,ant’.anf) +O(a) , (7.9)
i = mg*—atf (go,anf’ amb?) + O(a) (7.10)
where on the r.h.s. we have now the mass-shifts for the theory without mdsmass-splitting

(Ns = 2+ 2 QCD): here the distinction between the two sectors is immaterial. From eqgg. (7.9
(7.10) it follows immediately

mgd =mf=my = m;((:cé)cz m)F()(Cuﬁg—k O(a) . (7.12)
. .. . d
The above result suggests to tun to its critical value Wherm;(cu%: 0 keepingmg® = m? (or
Kes = Kud): in this situationm)F(’(CCAS)C = O(a). Observe that since the average quark mass ircshe

sector is typically large, th®(a) error is expected not to affect the full twist improvement in the
sense of [37], while it is critical to have good tuning in the light quark sector.

7.3 Numerical simulations

Our strategy is to simulate thdy = 2+ 1+ 1 theory at full twist. As previously explained for
a given value of3 this can be obtained by fixing.s = kyq = kK and tuning the PCAC quark mass
in the light quark sector to zero (or equivalently by tuning the twist angle/@ see sec. 4). At
the critical valuex = k¢, MCSAC = 0 by definition andn;&As)C: O(a), where theD(a) error in the

X (ud)
cssector is not expected to sp@fa) improvement.

For the gauge action we choose the tree-level Symanzik improved actiéch siows for
Nf = 2 an acceptable behavior with respect to the phase transition at smallmaages and in
addition presents several more advantages in comparison with the ote#ri@candidate DBW?2,
see also section 5.

At present, we are simulating on two lattice-sizes? 124 and 18- 32, our preliminary ob-
jective being the reproduction of the physical situation of previous simulgiants [16] for the
N¢ = 2 theory. This means a lattice extensloa: 2 fm andro/a= 3 and 4 (corresponding to lattice
spacingsa~ 0.17 fm and 012 fm, respectively), lightest pion mass; ~ 400 MeV (n,q ~ ms/3)
and 300 MeV g ~ ms/5).

Thesandc quark masses need to be tuned to their physical values. To this end weethasu
kaon andD meson masses and monitor the dimensionless quamgtigsandromp which in nature
assume the valuagmg ~ 1.25 andromp ~ 4.7. Due to ther; term in the action, see eq. (7.2),
kaons and mesons get mixed in the twisted theory. We solve the problem by diagonalizing the
two-by-two matrix of theK-D correlators.

The analysis of the spectrum in themesonic sectors) is even more awkward, again due
to flavor mixing. Ther; term in the action introduces indeed off-diagonal matrix elements in the

TAn additional symmetry in thecs sector is needed for the argument, namgly— exp{iZTilxx Xx —
Xxexp{—i5 11} composed withus — —p5.
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Table 3: Simulation parameters of the performed simulations. Sedékt for the
explanations of the symbols.

run S K allyg ales aMs  Neont

(@ 3.30 0.1720 0.01 0.325 0.275 550
(b) 3.30 0.1725 0.01 0.325 0.275 920
(0 3.30 0.1730 0.01 0.325 0.275 900
(d) 3.30 0.1735 0.01 0.325 0.275 730
(e 3.30 0.1740 0.01 0.325 0.275 590

Table 4: Measured quantities: the Sommer saglep meson massy,, pion mass
my; and PCAC quark masmﬁ(cuﬁg (light quark sector); kaor) andDs meson masses.
For theDs meson only connected diagrams have been taken into account.

run ro/a amy an amx am amps an{;ﬁﬁ,‘;

(8) 2.23(7)(10) 0.7102(38) 0.8884(41) 0.9551(21) 1.456(10) 1.64H6 0.08795(57)
(b) 2.40(5)(5) 0.6069(61) 0.8075(38) 0.9078(41) 1.420(11) 1.6885( 0.06399(73)
(© 3.05(3)(8) 0.3463(49) 0.633(13) 0.7940(16) 1.247(19) 1.5684(%.01589(82)
(d) 4.11(6)(10) 0.6012(88) 0.981(14) 0.9074(30) 1.119(18) 1.MEE)A(-0.0711(21)
(6 4.45(9)(20) 0.808(33) 1.1429(47) 1.0004(17) 1.311(11) 1.4886( -0.1208(46)

quark propagator which in turn produce disconnected diagrams fdbdheadronic correlators;
denoting witha!! the quark propagator, one h&8,(disg (X0, Yo) = Yx (Tr{A%ys} TH{AYYS)) -
This disconnected term is produced ®ya) flavor symmetry breaking of the twist-term, similarly
to that for the neutral pion in the light quark sector, cf. the contributior) {8l ref. [39] for a
discussion of this subject. (The present case is however a bit diffsieoe the disconnected term
originates from direct mixing betweeanands quarks, while in the neutral pion case it is due to a
mismatch in the sign of the twisted mass fiandd quarks.) In this preliminary study we measure
the Ds meson mass without taking into account the disconnected contribution.

The simulation of th&N; = 2+ 1+ 1 theory is performed by a polynomial hybrid Monte Carlo
algorithm (PHMC) [40]. The structure of the algorithm goes along the lingsated in [41]. In
table 3 we report the parameters of the first simulations performed. Thmpters were chosen in
such a way that the bare quark masses follow at full twist the propomgnsy : mg:me=1:1:
5:60, see (7.3) (of course renormalizations can alter these proprtitms point atk = 0.1730
is the one nearest to full twist where the pion mass is minimal: hgige~ 3, m; ~ 400 MeV and
theD meson mass is near to the physical value, but the kaon is heavier than e ngtyy ~ 2.4.

So the next step will be to decrease thguark mass. Simulations on a®t®2 lattice have been
also started.
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One interesting subject of investigation in perspective is of course theffidsr phase tran-
sition at small quark masses in this nélw = 2+ 1+ 1 setup, and in particular how it compares
with previous studies with different gauge actions and/or quark flavatecd (N = 2 and Wilson
plaguette, DBW2 or tISym gauge actions). The question arises, how tlaniys of thes quark
can influence the phase transition and, more in general, the low-enatgyde of QCD. For the
moment we can only state that no signs of metastabilities were found in the fpressnwhich
could however be just too far from the metastable region.

8. Conclusions

We have investigated the phase structure of lattice QCD by probing diffgeeige actions,
adding to the standard Wilson plaquette action a term proportional to the gatdamplaquette,
see eq. (2.2). By varying the couplig which multiplies the rectangular plaquette term, one can
interpolate between various actions and this allows to understand in moretdetpioperties of
the phase structure, in particular how the strength of the transition departte additional term
and how this influences the approach to the continuum limit. For the fermion agéaaways
used Wilson twisted mass fermions at various values of the twisted mass pargmete

That even a small value af can already have a large impact on the phase structure is il-
lustrated in figure 12 where we show the average plaquette value ast@ifuatthe hopping
parametek for three different actions, i.e. values @f, namelyc; = 0 (Wilson),c; = —1/12 (tl-
Sym) andc; = —1.4088 (DBW?2). As one moves from the negative or positive side across the
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Figure 12: Hysteresis of the average plaquette valuecas moved across the critical point, for Wilson,
tISym and DBW2 gauge action at~ 0.17 fm.

critical point, where the PCAC quark mass vanishes, a hysteresis in tregavglaquette value
develops of which the size and the width is an indicator of the strength of eephansition. We
observe that both the width and the size of the gap in the plaquette valuasiEexi@nsiderably
as we switch oreg to ¢; = —1/12 (tISym action). Decreasing further down toc; = —1.4088
(DBW?2 action) still seems to reduce the size of the gap, but the effectpsisingly small despite
the large change io;. Note that the results in figure 12 are for a lattice spaaing0.17 fm that is
roughly consistent for all three actions.
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However, the results for the Wilson plaquette gauge action are at nonwisted masg: =
0.013, while they are at zero twisted mass for the tISym and the DBW2 actione Siacstrength
of the phase transition is expected to be reduced as one switches to arndwisted mass, a true
comparison apt = 0 would disfavor the Wilson plaquette gauge action even more. Note also that
the phase transition is a generic feature of dynamical Wilson fermion simulatidependent of
whether a twisted mass is switched on, i.e. the transition also occurs for staffdson fermion
simulations. Another feature of the first order phase transition is that itsgstreveakens rapidly
when the lattice spacing is made finer. This is illustrated in fig. 2 for the case Witeon plaquette
gauge action.

A satisfactory setup for dynamical simulations with, ddy,= 2 flavors of quarks would be
to reach pion masses of about 25800 MeV and a box size df > 2 fm. At the same time, one
should stay at full twist to realize O(a)-improvement. From our preliminasylte we find that
for the tISym action this can be achieved with a reasonable computer tifhe &9 onL/a= 20
lattices. For smaller values @f we find that at pion masses of about 400 MeV large fluctuations
appear, although no clear signs of metastabilities are visible. Although f@BN&2 action the
situation might be somewhat better, the advantages of the tISym action sucbdasanvergence
of perturbation theory and small scaling violations as found quenchedl ue#o decide on the
tISym gauge action as the action of choice.

For our present results from simulations using the Wilson plaquette and tNé20fawuge
actions we found thayPT describes the data rather well and allows to extract a number of low-
energy constants of the effective chiral Lagrangian. We have atsothat scaling violations of
both actions are not very large when we compared physical result$eaedif values of the lattice
spacing.

Very good news is that simulations witly = 2+ 1+ 1 flavors of dynamical quarks are per-
fectly feasible with the twisted mass formulation of lattice QCD. Our first and predirgiresults
are very promising. The (PHMC) algorithm works nicely and, even more iitapt it seems that
the tuning in this physically more realistic setup is quite manageable. Taken thi®dgther
with the new developments of fast versions of the HMC algorithm to simulatendigahquarks, it
seems natural to start now realistic simulations with twisted mass fermions.
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