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1. The lattice approach

Lattice methods allow, in principle, the complete ‘ab initio’ calculation of the fundamental
parameters of QCD, such as quark masses. However quarks are not directly observable, being
confined in hadrons and are thus not asymptotic states. So to determine their mass necessitates the
use of a non-perturbative approach – such as lattice QCD. In this brief article, we report on our
recent results for the strange quark mass for 2-flavour QCD in the MS-scheme at a scale of 2GeV,
mMS

s (2GeV). Further details can be found in [1].

1.1 Renormalisation group invariants

Being confined, the mass of the quark, mS
q (M), needs to be defined by giving a scheme, S

and scale M,

mS
q (M) = ZS

m (M)mBARE
q , (1.1)

and thus we need to find both the bare quark mass and the renormalisation constant. An added
complication is that the MS-scheme is a perturbative scheme, while more natural schemes which
allow a non-perturbative definition of the renormalisation constants have to be used. It is thus
convenient to first define a (non-unique) renormalisation group invariant (RGI) object, which is
both scale and scheme independent by

mRGI
q ≡ ∆ZS

m (M)mS (M) ≡ ZRGI
m mBARE

q , (1.2)

where, defining the coupling constant in the chosen scheme to be always gMS (i.e. expanding the
β S and γS

m functions in terms of gMS) we have

[∆ZS
m (M)]−1 =

[
2b0gMS(M)2]− dm0

2b0 exp

{∫ gMS(M)

0
dξ
[

γS
m (ξ )

β MS(ξ )
+

dm0

b0ξ

]}
. (1.3)

The β S and γS
m functions (with leading coefficients −b0, dm0 respectively) are known perturba-

tively up to a certain order. In the MS scheme the first four coefficients are known, [2, 3], and this
is also true for the RI′-MOM scheme [4, 5] (which is a suitable scheme for lattice applications). In
Fig. 1 we show the results of solving eq. (1.3) as a function of the scale M ≡ µ and M ≡ µp for both
the MS and RI′-MOM schemes respectively. We hope to use these (perturbative) results in a region
where perturbation theory has converged. 2GeV corresponds to µ/ΛMS ∼ 8, where it would appear
that the expansion for the MS-scheme has converged; for the RI′-MOM scheme using a higher
scale is safer (which is chosen in practice). However, when the RGI quantity has been determined
we can then easily change from one scheme to another. Of course these scales are in units of ΛMS

which is awkward to use: the standard ‘unit’ nowadays is the force scale r0. To convert to this unit,
we use the result for r0ΛMS as given in [6].

1.2 Chiral perturbation theory

We have generated results for n f = 2 degenerate sea quarks, together with a range of valence
quark masses. Chiral perturbation theory, χPT, has been developed for this case, [7, 8]. We have
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Figure 1: One-, two-, three- and four-loop results for [∆ZMS
m (µ)]−1 and [∆ZRI′−MOM

m (µp)]
−1 in units of ΛMS.

manipulated the structural form of this equation to give an ansatz of the form

r0mRGI
s = cRGI

a

[
(r0mK+)2 +(r0mK0)2 − (r0mπ+)2]

+(cRGI
b − cRGI

d )
[
(r0mK+)2 +(r0mK0)2](r0mπ+)2 + 1

2(c
RGI
c + cRGI

d )
[
(r0mK+)2 +(r0mK0)2]2

−(cRGI
b + cRGI

c )(r0mπ+)4 + cRGI
d (r0mπ+)4 ln(r0mπ+)2

−cRGI
d

[
(r0mK+)2 +(r0mK0)2][(r0mK+)2 +(r0mK0)2 − (r0mπ+)2]×

ln
(
(r0mK+)2 +(r0mK0)2 − (r0mπ+)2)+ . . . , (1.4)

and

r0mRGI
q

(r0mps)2 = cRGI
a + cRGI

b (r0mS
ps)

2 + cRGI
c (r0mps)

2 + cRGI
d

(
(r0mS

ps)
2 −2(r0mps)

2) ln(r0mps)
2 . (1.5)

where mps, mS
ps are the valence and sea pseudoscalar masses respectively (both using mass degen-

erate quarks). The first term is the leading order, LO, result in χPT while the remaining terms come
from the next non-leading order, NLO, in χPT. We note that to NLO, we can determine cRGI

a and
cRGI

i , i = b,c,d using mass degenerate quarks and then simply substitute them in eq. (1.4).

1.3 The axial Ward identity

Approaches to determining the quark mass on the lattice are to use the vector Ward identity,
VWI (see e.g. [9]), where the bare quark mass is given in terms of the hopping parameter by1

mq =
1
2a

(
1
κq

−
1

κS
qc

)
, (1.6)

or the axial Ward identity, AWI, which is the approach employed here. Imposing the AWI on the
lattice for mass degenerate quarks, we have

∂µAµ = 2m̃qP +O(a2) , (1.7)

1This is valid for both valence and sea quarks. κS
qc is defined for fixed β by the vanishing of the pseudoscalar mass,

i.e. mps(κS
qc,κS

qc) = 0. κS
qc has been determined in [9].
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Figure 2: ∆ZRGI
m (dashed line), ZA/ZRI−MOM

P (empty squares) and ZRGI
m (filled circles) for β = 5.40 (filled

circles), together with a fit F(aµp) = p1 + p2(aµp)
2 + p3/(aµp)

2.

and A and P are now the O(a) improved2 unrenormalised axial current and pseudoscalar density
respectively and m̃q is the AWI quark mass. So by forming two-point correlation functions with P

in the usual way, this bare quark mass can be determined. We have found results for four β -values:
5.20, 5.25, 5.29, 5.40, each with three sea quark masses and a variety of valence quark masses, [1].

Furthermore upon renormalisation we have that

ZS
m̃ (M) =

ZA

ZS
P (M)

. (1.8)

As mentioned before, we use the RI′-MOM scheme, to determine ZA and ZRI′−MOM
P in the chiral limit3.

We now have all the components necessary to compute ZRGI
m and hence r0mRGI

q . In Fig. 2 we show
∆ZRI′−MOM

m , ZA/ZRI′−MOM
P and their product, giving ZRGI

m for β = 5.40. This should be independent of
the scale (aµp)

2 at least for larger values. This seems to be the case, we make a phenomenological
fit to account for residual (aµp)

2 effects.

With ZRGI
m , we can now find r0mRGI

q and hence the ratio r0mRGI
q /(r0mps)

2, using the values of r0/a
given in [6]. In Fig. 3 we plot this ratio (against (r0mps)

2) for β = 5.40. Using eq. (1.4) to eliminate
cRGI

a in favour of r0mRGI
s /((r0mK+)2 +(r0mK0)2−(r0mπ+)2) in eq. (1.5) gives r0mRGI

s directly4 to NLO
in our fit function.

We have restricted the quark masses to lie in the range (r0mps)
2 < 5, which translates to

mps ∼< 850MeV, which is hopefully within the range of validity of low order χPT results. (Indeed

2The improvement term to the axial current, ∂µ P together with improvement coefficient cA, [10] has been included.
The mass improvement terms, together with their associated difference in improvement coefficients, bA, bP appear to be
small and have been ignored here.

3For ZA (using the sea quarks only) we make a linear extrapolation in amq, while for ZRI′−MOM
P we must subtract

out a pole in the quark mass, [11], which occurs due to chiral symmetry breaking. We thus make a fit of the form
(ZRI′−MOM

P )−1 = AP +BP/amq.
4This is preferable to first determining cRGI

a and cRGI
i , i = 1,2,3 by using eq. (1.5) and then substituting in eq. (1.4))

as the direct fit reduces the final error bar on r0mRGI
s .
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Figure 3: r0mRGI
q /(r0mps)

2 against (r0mps)
2, together with a fit using eq. (1.5) for β = 5.40. Filled points

represent valence quark results while unfilled points are the sea quark results. The dashed line (labelled
‘
√

2mK’) represents a fictitious particle composed of two strange quarks, which at LO χPT is given from
eq. (1.4) by

√
(r0mK+)2 +(r0mK0)2 − (r0mπ+)2, while the dashed-dotted line (labelled ‘mπ ’) representing a

pion with mass degenerate u/d quark is given by r0mπ+ .

using r0/a, rather than their chirally extrapolated values for example, tends to give less variation in
the ratio r0mRGI

q /(r0mps)
2 so we expect LO χPT to be markedly dominant.) Thus finally, for each

β -value we have determined r0mRGI
s and can now perform the last extrapolation to the continuum

limit.

2. Results

Our derivation so far, although needing a secondary quantity such as r0/a for a unit, depends
only on lattice quantities. Only at the last stage, with our direct fit did we need to give a physical
scale to this unit. A popular choice is r0 = 0.5fm. However there are some uncertainties in this
value; our derivation using the nucleon gave r0 = 0.467fm and so to give some idea of scale
uncertainties, we shall consider both values. (The main change when changing the scale comes
from the r0s in eq. (1.4), as mRGI

s ∝ r0, while changes in ∆ZMS
m are only logarithmic.)

Using the results from section 1.1 for [∆ZMS
m (2GeV)]−1 to convert mRGI

s to mMS
s (2GeV) gives

the results shown in Fig. 4. Also shown is an extrapolation to continuum limit. We finally find the
result

mMS
s (2GeV) =

{
117(7)MeV for r0 = 0.5fm
111(6)MeV for r0 = 0.467fm

, (2.1)

where the error is statistical. This is to be compared to our previous result using the VWI, [9],
which gave results of 126(5)MeV, 119(5)MeV for r0 = 0.5fm and 0.467fm respectively. We
take a further systematic error on these results as being covered by the different r0 values of about
∼ 6MeV. Although the continuum extrapolation should be treated with caution, it does indicate
that the strange quark mass for 2-flavour QCD lies in the region of 100 – 130MeV.
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Figure 4: Results for mMS
s (2GeV) (filled circles) versus the chirally extrapolated values of (a/r0)2 (as given

in [6]) together with a linear extrapolations to the continuum limit. For comparison, we also give our previous
result using the VWI, [9] (open squares) and the ALPHA AWI determination from [12], (open triangles).
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