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We consider effects resulting from the use of different discretizations for the valence and the
sea quarks, considering Wilson and/or Ginsparg–Wilson fermions. We assume that such effects
appear through scaling violations that can be studied using effective-lagrangian techniques. We
show that a double pole is present in flavor-neutral Goldstone meson propagators, even if the
flavor non-diagonal Goldstone mesons made out of valence or sea quark have equal masses. We
then consider some observables known to be anomalously sensitive to the presence of a double
pole. We find that the double-pole enhanced scaling violations may turn out to be rather small in
practice.
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1. Introduction

The use of mixed actions in Lattice QCD (LQCD) is at present gaining popularity. With
“mixed action" we refer to any simulation in which different lattice fermions are used in the valence
and sea sectors. (If only the bare masses differ, we are dealing with a partially-quenched (PQ)
theory [1].) The main reason is that the generation of dynamical-fermion configurations is very
expensive, while for many quantities the “good quality" of symmetries (such as chiral and flavor or
taste symmetries) is more important in the valence sector than in the sea sector. An example of this
are the power-like subtractions needed for K → π , for which good chiral symmetry in the valence
sector is essential, but not that in the sea sector.

However, the use of mixed actions raises field-theoretical questions. At non-vanishing lattice
spacing a a mixed-action theory is not unitary, and the question is what happens to unitarity in
the continuum limit, as well as how big the effects of the violation of unitarity are at the lattice
spacings used in actual simulations. We note that similar issues arise for many discretizations of
LQCD which do not employ mixed actions, such as improved actions and actions with Ginsparg–
Wilson (GW) fermions.

Here we address the second question, the size of effects at non-zero lattice spacing. We extend
the notion of universality to assume that unphysical effects due to the use of a mixed action vanish
in the continuum limit, and are controlled by positive powers of a. We further assume that effective-
field theory (EFT) techniques can be used to investigate the behavior of mixed-action theories at
low energy.

The most salient phenomenon which occurs if the valence quarks don’t match the sea quarks
is the appearance of a double pole in flavor-neutral Goldstone meson propagators, with a residue
R proportional to a2, as will be explained below. If also the renormalized quark masses are not
equal, there is also a contribution from the quark mass difference, R ∝ c1a2 + c2(msea −mvalence)
[1]. Since the double pole represents a dramatic change of the infrared (IR) behavior of the theory,
it is important to investigate the most serious consequences of the double pole. As an example of
this, we consider the enhanced finite-volume effects in I = 0 pion scattering. For a more detailed
account of this work, see Ref. [2]. In our work, we deal only with the cases in which the fermions
in both sectors are Wilson-like or GW fermions.1

2. The double pole

According to our assumptions, a mixed-action theory is a PQ theory in the continuum limit
[2]. We therefore start with continuum chiral perturbation theory (ChPT) at lowest order, described
by the PQ lagrangian [1]

Lcont =
1
8

f 2 str(∂µΣ∂µΣ
†)− 1

4
f 2B0 str(ΣM† +MΣ

†) , (2.1)

where Σ = exp(2iΦ/ f ) is the non-linear meson field, f and B0 are the well-known lowest-order
low-energy constants (LECs), and M = diag(mv,mv, . . . ,ms,ms, . . . ,mv,mv, . . .) the quark mass ma-

1For mixed actions with staggered sea, see Ref. [3].
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trix, with K valence quarks of mass mv, N sea quarks of mass ms, and K ghost quarks of mass mv.2

The relevant chiral symmetry group is thus SU(K +N|K)L×SU(K +N|K)R.
The next step we need is provided by the systematic analysis of Ref. [4], where mixed actions

with a Wilson sea and GW valence quarks were considered in ChPT up to order a2. It is very easy
to generalize that work to the slightly more general case where the valence and sea sectors can be
any combination of Wilson-like and GW fermions.3

The first observation is that at a 6= 0 the symmetry group is smaller. For GW valence quarks
and a Wilson-like sea the symmetry group is

[SU(K|K)L×SU(K|K)R]×SU(N) (GW−Wilson) , (2.2)

while the case of Wilson-like valence and sea quarks (but with unequal lattice actions) the symme-
try group is even smaller:

SU(K|K)×SU(N) (Wilson−Wilson) , (2.3)

because all chiral symmetries are now broken.
Up to order a2 there are a number of new operators which appear in the effective lagrangian,

and we only give the ones here which are relevant for our investigation,

δLW = −(a f )2

32

(
γvv(str(Pv(Σ−Σ

†)))2 + γss(str(Ps(Σ−Σ
†)))2 (2.4)

+γvsstr(Pv(Σ−Σ
†))str(Ps(Σ−Σ

†))
)

,

in which γvv,vs,ss are new LECs, and Pv,s are projectors on the valence and sea sectors, respectively.
We note that γvv = γvs = 0 when the valence quarks are GW, because these operators break chiral
symmetry, and thus are excluded by the symmetry group (2.2), but not by the group (2.3).

In order to obtain the meson propagators, we need to expand the lagrangian to quadratic order
in the field Φ. If we integrate out the sea-η ′ (which is heavy because of the singlet part of the η ′

mass), we have that str(Φ) = str((Pv +Ps)Φ) = 0, and Eq. (2.4) reduces to quadratic order to

δLW =
1
2

a2 (γvv + γss−2γvs)(str(PvΦ))2 + . . . . (2.5)

Recognizing that str(PvΦ) is nothing else than the “super-η ′" field of quenched QCD, it is obvious
that δLW leads to a double pole in flavor-neutral propagators.

In the flavor non-diagonal sector, we find (tree-level) Goldstone meson masses [4]

M2
vv = 2B0vmv +2W0va+2βva2 , (2.6)

M2
ss = 2B0sms +2W0sa+2βsa2 ,

2We take degenerate valence and degenerate sea quarks, but it is straightforward to generalize.
3With “Wilson-like" we refer to any type of Wilson fermion, including for instance clover and twisted-mass Wilson

fermions. Our conclusions can be straightforwardly generalized to these situations. With GW fermions we refer to
overlap fermions or domain-wall fermions with a small enough residual mass. A potentially interesting special case is
the combination of untwisted Wilson sea quarks and twisted Wilson valence quarks. If this is done by only twisting the
mass matrix of the valence quarks, this is a PQ theory, and not a (genuinely) mixed theory. The relevant symmetry group
in that case is SU(K +N|K).
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where we now allowed for the fact that with the reduced symmetry groups the LECs B0, W0 and β

can be different in the valence and sea sectors. These equations tell us (to leading order in ChPT)
what it means to set renormalized valence and sea quark masses equal: one chooses mv,s such that
Mvv = Mss. We note that W0v,s = 0 if order-a improved Wilson fermions are used, and that W0v,s = 0
as well as βv,s = 0 for GW fermions.

Flavor-neutral propagators are given by (i and j are flavor indices)

〈ΦiiΦ j j〉(p) =
(

δi j −
1
N

)
1

p2 +M2
vv
− R

(p2 +M2
vv)2 , (2.7)

with
R =

1
N

(
M2

ss−M2
vv

)
+(γvv + γss−2γvs)a2 . (2.8)

It is clear that R 6= 0 even if Mvv = Mss. In fact, one may either choose the valence quark mass
such that R = 0, or choose it such that Mvv = Mss and live with a non-vanishing R. Either way,
the appearance of a double pole due to scaling violations in mixed actions is relevant for hadronic
quantities sensitive to the double pole, especially if the effects are enhanced because of the IR-
singular nature of the double pole.

3. Example: I = 0 pion scattering

It is easy to find quantities particularly sensitive to the double pole. Examples are the I = 0
two-pion energy in a finite volume (which are related to the corresponding phase shifts) [5], the
anomalous large-time behavior of the a0 propagator [6], and the anomalous large-distance behavior
of the nucleon-nucleon potential [7]. Here we will just briefly consider the finite-volume two-pion
energy; for the a0 we refer to Ref. [2].

The energy of two pions at rest in an I = 0 state, and in a finite spatial box of linear dimension
L with periodic boundary conditions, is given by (to one loop) [5, 2]

∆EI=0

2Mvv
=− 7π

8 f 2MvvL3 +
1
2

B0(MvvL)δ 2 +
1
2

(
1− 1

N

)
A0(MvvL)δε +O(ε2) , (3.1)

where

δ =
R

8π2 f 2 , ε =
M2

vv

16π2 f 2 , (3.2)

B0(ML) = −0.53+O
(
1/(ML)2) ,

A0(ML) = 49.59/(ML)2 +O
(
1/(ML)3) .

Setting Mvv = Mss ≡M, we may consider two different regimes, one in which ε ∼M2/Λ2 ∼ aΛQCD

[4], and one in which ε ∼ M2/Λ2 ∼ (aΛQCD)2 [8], where Λ ∼ 1 GeV is the chiral symmetry
breaking scale. In the first of these two regimes, the ratio of the one-loop to the tree-level terms
in Eq. (3.1) is of order ε3 × (ML)3 and ε2 ×ML for the δ 2, respectively, δε terms. In the second
regime this ratio is of order ε × (ML)3.

One notes that the one-loop contributions are suppressed by positive powers of ε in both
regimes, but for the positive powers of ML which accompany these powers of ε . This is an example
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of the enhancement due to the “sick" IR behavior of the double pole — these terms would all
disappear when R = 0. But in a mixed-action theory at a 6= 0, R 6= 0 even at Mvv = Mss.

To get an idea about the size of these effects, one may substitute some typical values for the
parameters of a LQCD simulation. Choosing for example aΛQCD ∼ 0.1, aM ∼ 0.2 and L/a ∼ 32,
one finds that the δ terms in Eq. (3.1) represent scaling violations of order 10%. This is small, but
not negligible. Of course, in this estimate, we took all other constants (including the coefficient of
a2 in R) equal to one. Actual simulations are needed to make further progress with the investigation
of the size of these effects.

4. Conclusion

Let us summarize what we learned about the use of mixed actions for LQCD computations.

We begin by re-emphasizing that we assumed that the unphysical effects of mixed actions are
encoded in scaling violations, and that EFT techniques can be used to study the issue. We recall
that this approach has proven very successful in similar cases, such as the unphysical effects due to
(partial) quenching. It is therefore important to test this assumption also in this case through actual
simulations, in which in addition the numerical size of the effects can be estimated more reliably
than through our parametric estimates above and in Ref. [2].

We have concentrated on the role of the double pole, because it is the most IR-sensitive probe
of unphysical effects due to the use of mixed actions, just as it is in the case of (partial) quench-
ing. Clearly, the effects are quantity dependent, and are expected to be most pronounced for those
quantities for which there is a clear unphysical enhancement. The example we gave is that of en-
hanced finite-volume effects in pion scattering. We concluded in that case that the effects are likely
to be rather small numerically in present-day simulations, but not so small as to be automatically
negligible.

Finally, we observe that in the case of the I = 0 two-pion energy, this effect can also be
monitored if one leaves out the “double-annihilation" diagram (as was done in Ref. [9] because
of poor statistics), because the effective theory can be adapted to reflect this situation [5]. For the
terms shown in Eq. (3.1) this corresponds to dropping the δ 2 term. Our 10% estimate above came
largely from the δε term, and it is thus plausible that the size of the effect does not become much
smaller without the double-annihilation diagram.
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