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We present the most recent lattice results for the lowest-order hadronic contribution to the muon

anomalous magnetic moment using 2+1 flavor improved staggered fermions. A precise fit to

the low-q2 region of the vacuum polarization is necessary to accurately extract the muong−2.

To obtain this fit, we use staggered chiral perturbation theory with the inclusion of the vector

particles as resonances, to evaluate the vacuum polarization. We discuss the preliminary fit results

and attendant systematic uncertainties, paying particular attention to the relative contributions of

the pions and vector mesons.
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Figure 1: The lowest order hadronic contribution to the muong−2. The blob represents all QCD diagrams.

Currently, experimental measurements of the muong−2 have reached a level of high precision
[1]. As a check on the current standard model of particle physics, a competitively precise theoretical
estimate for this quantity is needed. The current theoretical calculations come from dispersion
relations relating the photon vacuum polarization to the cross-section for eithere+e− →hadrons or,
by using isospin symmetry,τ decay to hadrons. The agreement between the theoretical calculations
coming frome+e− data to experiment is within 2.7 standard deviations, and this is lowered to
1.4 standard deviations if one includes the results incorporating τ decay [2, 3]. The need for
a determination completely from first principles (i.e., using the lattice) is desirable to check the
current discrepancy between theory and experiment.

We can extract the muon anomalous magnetic moment by calculating the full muon-photon
vertex, where the correction to the tree-level result is given byaµ ≡ (g−2)/2 = F2(q2 = 0), where
F2(q2) is the form factor proportional to[γµ ,γν ] in the full vertex, andq is the momentum trans-
ferred to the photon. This can be calculated in perturbationtheory in the electroweak theory, with
the first contribution coming in atO(α), whereα = e2/4π is the fine-structure constant.

The first effects from QCD come in atO(α2) and are shown in Fig. 1. The hadronic contri-
butions are 7×10−5 smaller than the leading corrections and account for most ofthe discrepancy
with experiment. Due to the strength of the strong coupling constant, these terms cannot be reliably
calculated in perturbation theory at the relevant energies, so other methods must be employed to
calculate them, and this is precisely where the lattice can be useful. Currently, the next hadronic
contribution, coming from light-by-light scattering atO(α3), is also being studied using lattice
techniques [4].

Lattice QCD provides a first principles method to calculate the hadronic contribution to the
muong−2. We can calculate the QCD contribution to the muong−2 coming from the vacuum
polarization of the photon using Refs. [5, 6, 7],

a(2)had
µ =

(α
π

)2∫ ∞

0
dK2 f (K2)Π(K2) , (1)

whereΠ(K2) is the vacuum polarization of the photon, which we calculateon the lattice, andf (K2)

is a kernel given in Ref. [5]. Sincef (K2) diverges asK2 → 0, we must be able to calculate the low
momentum region of the vacuum polarization very precisely,and thus large lattices will be needed
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Figure 2: The two diagrams that contribute to the photon vacuum polarization at one loop in SχPT.

here. This is also why perturbation theory is not reliable, since the largest contribution toa(2)had
µ

comes from the low-energy regime.
A detailed discussion of the lattice calculation can be found in Refs. [5, 6]. We used lattices

generated by the MILC collaboration using 2+1 flavors of light dynamical improved staggered
quarks. The results shown here are those coming from three ofthe “fine” lattices (a≈ 0.086 fm)
with a lattice strange sea quark mass of 0.031. The light sea quark mass in lattice units is 0.0062
on the lattice volume of 283×96 and 0.0031 on the 403×96 volume.

In order to fit to the low-momentum region, we use Staggered Chiral Perturbation Theory
(SχPT) [8] coupled to photons. The generalization of the standard staggered chiral Lagrangian
to include external photons amounts to changing the derivative operator to a covariant derivative:
∂µΣ → DµΣ = ∂µΣ + ieAµ [Q,Σ], whereΣ is the 12×12 matrix of pseudo-Goldstone bosons,Q is
the light quark charge matrix in units ofeandAµ is the photon field. Recall the chiral symmetry of
SχPT is anSU(12)L×SU(12)R symmetry for 3 flavors of staggered quarks, and under this symme-
try Σ transforms asΣ → LΣR† with L ∈ SU(12)L andR∈ SU(12)R. Our (Euclidean) Lagrangian in
this case is given by

L =
f 2

8
Tr[DµΣDµΣ†]− µ f 2

4
Tr[M Σ+ Σ†

M ]+a2
V (2)

whereV is the taste-symmetry breaking potential for multiple flavors of staggered quarks [8] and
M is the light quark mass matrix. No additional terms arise at this order in the Lagrangian which
violate the taste symmetry while being coupled to the external photons. Additionally, we drop the
additional singlet mass term from Ref. [8] as it will not be relevant for the current calculation.

Using this, we can calculate the one-loop contribution (Fig. 2), which is given by

Π(p2) =
α
4π

1
16∑

i,t

{

1
3

(1+xit )
3/2 ln

(

√

1+xit +1
√

1+xit −1

)

− 2xit

3
− 8

9
+

1
3

ln

(

m2
it

Λ2

)}

+A (3)

wherex = 4m2/p2, i ∈ {π+,K+}, and the sum overt is over the 16 tastes of mesons. The masses
for these mesons in terms of the Lagrangian parameters are given in Ref. [8] and their measured
values on the lattice can be found in Ref. [9]. This is the onlyplace where the effects of taste
violations are seen. There are no neutral mesons in the loops, so we do not get effects from the
two-point hairpin insertions [8]. Additionally, aside from an overall constant,A, there are no free
parameters in this expression, as all the meson masses have been determined in lattice simulations
[9].
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Figure 3: The diagrams that contribute to the photon vacuum polarization with theρ in SχPT at (a) tree
level and (b) one loop. The double line is the vector mesons and the single line is a pion or kaon as before.

The problem, however, is that this is two orders of magnitudetoo small compared with the lat-
tice data. This indicates that there must be other effects which dominate the low energy physics of
the hadronic contribution to the vacuum polarization. We take a lesson from quenched simulations
[7, 10], where the vacuum polarization can be completely described by theρ . In that case, there is a
term coming from the vector bound state and an additional term coming from the two-particle con-
tinuum. This implies that perhaps in the dynamical case, there may be large effects coming from
vector mesons, despite their large masses, which are not included in standard chiral perturbation
theory.

The model we use here is that of the resonance formalism of Ref. [11], where the relevant
interaction Lagrangian is

Lvec =
fV

2
√

2
Tr
[

Vµν(σFµνσ† + σ†Fµνσ)
]

. (4)

fV is the tree-level vector decay constant,Vµν is the 12×12 matrix of the 9 vector mesons,σ2 = Σ,
andFµν = eQ(∂µAν −∂νAµ). Although we denote the vector fields using an antisymmetrictensor
field, it can be shown that there are still the correct number of degrees of freedom for each particle
[11].

Under the chiralSU(12)L×SU(12)R symmetry, we have

Vµν →UVµνU† , σ → LσU† = UσR† (5)

whereU is a spacetime-dependentSU(12) matrix defined by this equation.
The leading order contribution here is the tree-level diagram shown in Fig. 3(a), and is given

by

ΠV(p2) = − α
4π

(4π fV)2

3

[

3

p2 +m2
ρ0

+
1

p2 +m2
ω

]

. (6)

We have not included the taste index on the vectors, since empirically the taste-breaking for the
vectors is negligible [9]. Again, we see that if we measuredfV and the vector masses on the lattice,
there are no free parameters in this expression. Also, although the masses of the vectors are much
heavier than the pion, there is the enhancement factor of(4π fV)2 in the numerator here, which we
can see makes this the dominating factor in the overall result. Ref. [12] estimatesfV to be about
200 MeV, so this term is roughlyO(1) in the chiral power counting scheme, and thus will dominate
over the one-loop pion term.
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Figure 4: Fits to the lattice data using the tree-level vector formulafor the three different quark masses for
the low-q2 region.

Since we worked to one-loop order in the pion sector, we should do so in theρ sector, as
these should be roughly the same order. The only contributions are tadpole corrections to theρ − γ
vertex, Fig. 3(b). We get

Π1−loop
V (p2) =

α
4π

(

4 f 2
V

f 2

)

1
16∑

t

[

2
m2

πt
lnm2

πt

p2 +m2
ρ

+
m2

Kt
lnm2

Kt

p2 +m2
ρ

+
m2

Kt
lnm2

Kt

p2 +m2
ω

]

(7)

We can see again that the taste violations here enter quite trivially as they did in the pure pion
sector.

Figure 4 shows the data for the three different masses used with the results from fitting to
Eq. (6). Although these fits only include the tree-levelρ results for now, the inclusion of the one-
loop formulae changes the fit only slightly. We can see that Eq. (6) fits quite well, except for lighter
quark masses and the smallest value ofq2, where the fit function undershoots the data. There are
several reasons for why this may occur. We do not include the Naik term when calculating the quark
propagators, though it is hard to see how this would affect the lowq2, long-distance, behavior. It is
possible the effect is due to finite volume, though in the freetheory the vacuum polarization turns
over the other way from smallq2. Finally, it may simply be due to poor statistics.

Using the results of these fits, we find when extrapolating to the physical values of the quark
masses that the hadronic contribution to the muong−2 (from theq2 < 1 GeV regime) isahad,VP

µ =

657(20)×10−10. The perturbative contribution coming from theq2 > 1 GeV regime isahad,VP,pert
µ <∼

10×10−10, and the final result is the sum of these two terms. The error quoted here is statis-
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tical only. This is somewhat lower than the results from dispersion relations, which isahad,disp
µ =

693.4(5.3)(3.5)×10−10. The difference with the previous lattice result ofahad,VP
µ = 545(65)×10−10

[7] comes mainly from the inclusion of the 0.0031 light quark mass result which allows an extrap-
olation, using Eqs. (3) and (6), to the physical quark mass. This accentuates the fact that a theo-
retically motivated fitting function is necessary to obtainan accurate determination of the low-q2

region. We also note that the final value of the lowest order hadronic correction may increase fur-
ther if the observed overshoot of the fit function by the lattice data turns out to be physical. Finally,
we caution that the disconnected diagrams (connected by gluons) that contribute to the lowest order
vacuum polarization have not been included yet. These are Zweig suppressed in general and vanish
exactly in theSU(3) flavor limit, but may contribute on the one-to-few percent level.

This work was supported by the U.S. DOE. We thank NERSC for thecomputational resources
expended on this project. TB thanks Michael Ramsey Musolf for helpful discussions.
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