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1. Introduction

Electromagnetic (EM) properties of hadrons offer a rich source of interesting and important
phenomena. The patterns of the mass splittings between charged and neutral mesons or the mass
splittings among the octet or decuplet baryons are sensitive to the isospin breaking of up and down
quark masses and the presence of EM interactions. It is also known that the width difference of
the ρ+ and ρ0 mesons and the hadronic light-by-light scattering amplitude, which may not be
computed from measured EM properties of hadrons, play an important role in the standard model
(SM) prediction of the anomalous magnetic moment of muon.

Recent developments in lattice QCD in both hardware and software have advanced the field
closer to the goal of QCD calculations without approximation; large-scale, high precision un-
quenched simulations are becoming available [1]. What is important here is that the statistical
error of pseudoscalar meson masses are well under control, with size typically a few percent or
less. Remembering that charged-neutral meson splittings are of O(αem) ∼ O(1%), where αem is
the fine structure constant, it is expected that once EM interactions are successfully included, it will
be possible to determine the up and down quark masses, which are the poorly known parameters of
the SM, from first principles by using such splittings as inputs, and thus we can check the simplest
solution to the strong CP problem, mu=0.

In this talk, we focus on the determination of the light quark masses. The strategy is basically
following Refs. [2], where the EM fields are introduced in a non-compact form, and combined
with QCD link variables to realize QCD + QED theory on the lattice. While this pioneering work
made use of the Wilson quark action in the quenched approximation to QCD, here we employ
domain wall fermions [3, 4] and QCD configurations with two flavors of dynamical domain wall
fermions, generated by the RBC Collaboration [5]. Our activity toward the lattice calculation of
the anomalous magnetic moment of muon is reported in Ref. [6].

2. QCD+QED system

We employ unquenched QCD gauge configurations Uqcd,µ(x), generated with parameters V =

163 × 32, Ls = 12, M5 = 1.8 and three different sea quark masses, msea = 0.02, 0.03, 0.04 [5].
The lattice spacing is determined to be 1.691(53) GeV from mρ=770 MeV, and hence the physical
volume is roughly (1.9 fm)3. Calculations are performed on about 200 configurations from the
5,000 trajectories available at each value of the sea quark mass.

A non-compact form is adopted for the action of the U(1) gauge fields, Aem,µ(x) [2]. To gen-
erate Aem,µ(x), we first rewrite the action in momentum space, and impose the Coulomb gauge
condition. After diagonalizing the kernel, the gauge fields are chosen randomly according to a
Gaussian distribution and with e=1. The configuration Aem,µ(x) is then obtained by Fourier trans-
formation. It is worth noting that with the use of the non-compact action and the generation pro-
cedure described above there is no auto-correlation among the configurations, even for arbitrarily
small coupling. Since quenched QED is a free theory, the fine structure constant αem receives no
renormalization. Using Aem,µ(x) and the quark electric charge Qq, we obtain a U(1) link variable,
(Uemµ(x))Qq = eiQqAem,µ (x). Configurations for the (QCD + QED) theory are then constructed by
Uqcd,µ(x)× (Uem,µ(x))Qq , which are used in the inversion of the Dirac operator for valence quarks.
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Though e=1 is adopted in the configuration generation, any value of the quark’s electric charge can
be realized by tuning Qq.

In this system, the flavor non-singlet axial Ward-Takahashi (WT) identity for two flavors of
domain wall fermions with mass mq1 and mq2 and charge Qq1 and Qq2 is given by

∂ ∗
µA

a
µ (x) = (mq1 +mq2) Pa(x)+(mq1 −mq2) q̄(x)γ 5{

τa

2
,
τ3

2
}q(x)+2Ja

5q(x)+∑
s

ε(s)X a
s (x),

(2.1)
where A a

µ (x) takes the same form as the conserved axial-vector current in the pure QCD case, but
with link variables, Uqcd,µ(x)× diag.[(Uem,µ(x))Qq1 ,(Uem,µ(x))Qq2 ], Pa(x) a pseudoscalar density,
Ja

5q(x) the same as in pure QCD, and

X
a

s (x) = −
1
2 ∑

µ

[

Ψ̄s(x)(1− γµ)Uqcd,x,µ
(

(Uem,µ(x))Qq1 − (Uem,µ(x))Qq2
)

[
τa

2
,
τ3

2
]Ψs(x+ µ̂)

+Ψ̄s(x)(1+ γµ)U†
qcd,µ(x− µ̂)

(

(U†
em,µ(x− µ̂))Qq1 − (U†

em,µ(x− µ̂))Qq2
)

[
τa

2
,
τ3

2
]Ψs(x− µ̂)

]

, (2.2)

and ε(s) = 1 for 1 ≤ s ≤ Ls/2 and −1 for Ls/2 < s ≤ Ls. Notice that X a
s (x) vanishes when a = 3

or Qq1 = Qq2.
From the analogy to the fact that in pure QCD with the domain-wall formalism the presence

of the singlet axial anomaly becomes clear by considering the disconnected diagram involving
the singlet, mid-point current, it is inferred that the similar understanding is possible for the U(1)

anomaly, but this time the disconnected diagram involving the flavor non-singlet, mid-point current
Ja

5q(x) plays an important role. Due to the presence of the U(1) anomaly, none of the components of
A a

µ (x) is conserved for Qq1 6= Qq2 even in the quark massless limit, and hence there is no Nambu-
Goldstone (NG) boson in this system [7]. If you consider the lattice measurement of mπ0 through
the standard method using two-point correlation functions, the possible origin of the non-vanishing
mπ0 is the π0-singlet mixing, and it could affect mπ0 by O(α2

em) or higher. At present, we do
not include the π0-singlet mixing. Thus, π0 must become massless in the quark massless limit.
Notice that even after including the mixing effects, it is justified to regard π0 as an NG boson up
to O(α2

em). In addition to the above approximation, we are neglecting the disconnected diagram
in π0-π0 correlation function (for now). It should be noted that the latter approximation does not
affect the fact that “π0” becomes massless in the quark massless limit, and more importantly, the
point where mπ0 vanishes.

3. Numerical results

At present, we only have meson data in which the two valence quarks are degenerate with
the sea quark mass. The electric charge of the valence quarks is set to Qq = +2e/3 for the up
quark and −e/3 for the down quark. In this work, we take three values of e, which correspond

to αem = αem,phys,
(0.6)2

4π , (1.0)2

4π , to examine the αem dependence of the meson mass splittings. The
mass of the pions is extracted from two-point correlation functions as usual. We employ two
different operators, Pa(x) and Aa

0(x), as the interpolating operator. Since the EM interactions violate
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Figure 1: The αem dependence of the splittings. The results from 〈A0A0〉 are shown.

isospin symmetry, π0 mixes with the lightest isosinglet state. However, this mixing turns out to start
only at O(α2

em), and hence we neglect this effect as the present statistics cannot resolve such a small
effect. Although the calculation of mπ0 requires a disconnected diagram, we do not include it, as
mentioned earlier. We will come back to this point later.

At the leading order of chiral perturbation theory (ChPT) including the EM interactions, m2
π+

and m2
π0 are given by

m2
π+ = αem ∆(0)

+ + 2(B0 +αem ∆(m)
+ )(m f ,+ +mres), (3.1)

m2
π0 = 2(B0 +αem ∆(m)

0 )(m f ,+ +mres), (3.2)

to O(α2
em), where m f ,± = (m f ,d ±m f ,u)/2. In the following, these functional forms are used to

determine the low energy constants (LEC’s), B0, ∆(0)
+ , ∆(m)

+ and ∆(m)
0 . mres is estimated by finding

m f at which m2
π0 vanishes, since π0 can be considered as an NG boson.

Before discussing the determination of the LEC’s, let us mention O(αem)2 corrections. Fig-
ure 1 shows the αem dependence of the π+-π0 and π0-πQ mass splittings, where πQ denotes the
pion in pure QCD. It is seen that each splitting is well described by a linear function of αem in the
range 1

137 < αem < 0.08. This means that O(α2
em) contributions are not significant in this range of

αem. This observation allows us to treat the EM interactions perturbatively.
Now we proceed to the determination of the LEC’s. The entire analysis is done under a jack-

knife procedure. B0 is obtained by fitting the pure-QCD pion data, m2
πQ . By fitting m2

π+ −m2
π0 as

a function of m f , the combination (∆(m)
+ + ∆(m)

0 ) and ∆(0)
+ are extracted. Finally ∆(m)

0 is obtained
from the slope of m2

π0 −m2
πQ . In Fig. 2, the m f dependence of m2

π+ −m2
π0 and m2

π0 −m2
πQ and the

resulting fit curves are shown as examples. From these fits we obtain

B0 = 2.09(4), ∆(0)
+ = 0.0429(71), ∆(m)

+ = 2.28(31), ∆(m)
0 = 1.60(28), from A0, (3.3)

B0 = 2.06(4), ∆(0)
+ = 0.0466(51), ∆(m)

+ = 2.56(29), ∆(m)
0 = 1.94(27), from P, (3.4)

in lattice units. Since we have not measured masses of non-degenerate mesons, we simply apply
eqs. (3.1) and (3.2) to estimate the kaon masses,

m2
K+ = αem ∆(0)

+ + (B0 +αem ∆(m)
+ )(m f ,s +mres,s +m f ,u +mres,u), (3.5)

m2
K0 = (B0 +αem ∆(m)

0 )(m f ,s +mres,s +m f ,d +mres,d). (3.6)
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Figure 2: The m f dependence of π+-π0 splitting (left) and π0-πQ splitting (right).

Using the lowest order ChPT expressions,

m2
π0 = 2

(

B0 +αem ∆(m)
0

)

(m f ,+ +mres,+) , (3.7)

(mK+
2 +mK0

2) = 2B0 (m f ,s +m f ,+ +mres,s +mres,+)

+αem

(

∆(0)
+ +

(

∆(m)
0 +∆(m)

+

)

(m f ,s +mres,s)

)

, (3.8)

(m2
K0 −m2

K+)− (m2
π0 −m2

π+) = 2B0 (m f ,− +mres,−)+αem
(

∆(m)
0 −∆(m)

+

)

(m f ,s +mres,s),(3.9)

the results of eqs. (3.3) and (3.4), and the experimental values of the meson masses, we can deter-
mine m f ,± and m f ,s (O(αemm f ,±) terms have been neglected). Using a−1=1.691 GeV, and the non-
perturbative value of the quark mass renormalization factor 1/Zm = ZS=0.62 [8] (mMS(2GeV) =

Zm(m f + mres)), we obtain the following preliminary results for the quark masses (statistical error
only)

mMS
u (2GeV, ref) = 2.84(23) MeV (A0), 2.89(8) MeV (P), (3.10)

mMS
d (2GeV, ref) = 5.41(24) MeV (A0), 5.49(13) MeV (P), (3.11)

mMS
s (2GeV, ref) = 106.8(8) MeV (A0), 106.5(5) MeV (P). (3.12)

While the statistical errors appear to be under control, we emphasize that our results are determined
in the quenched approximation of QED, and we have used only m f = mval = msea data points in our
fits (‘ref’ in the above results is stressing it). It has been reported that in the pure QCD calculation
partially-quenched (PQ) valence quark mass effects at the next-to-leading order in ChPT tend to
increase the strange quark mass compared to the lowest-order extrapolation used here [5]. In ad-
dition, the naive definition of mres used in this analysis amounts to a constant shift downward of a
few percent on each of the quark masses compared to the results in [5]. Thus our results should be
considered preliminary. On the other hand, the effects of the EM interactions relative to pure QCD
(and on the mu −md mass difference itself) should not depend significantly on these details of the
analysis, as long as both are carried out using the same method. We have determined mMS

+ and mMS
s

in pure QCD using the leading order method described here and find that the EM interactions tend
to decrease these masses by roughly one percent (∼ O(αem)) although it is statistically less signifi-
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cant. We are currently computing the EM splittings using PQ valence quarks and the conventional
definition of mres to improve our determination of the quark masses.

4. Discussion and prospects

The systematic errors in this calculation are quickly surveyed below. In the measurements
of neutral pions, we ignored the contribution from the disconnected diagram, which affects the
determination of ∆(m)

0 . While it is possible to calculate this diagram explicitly, the clean extraction
of a signal is likely to be difficult.

In the study of the EM interactions, finite volume effects could be significant as the photons
are massless. We have estimated the finite volume effects by considering the vector-saturation
model [9, 10, 11] and applying the physical volume of our lattices to this estimation. We find
roughly a +10% increase in ∆(0)

+ . We expect a similar size of correction for the other new LECs,
though we need to check this.

Although it was not discussed in detail here, we also need to take into account effects of the
third dynamical quark and non-zero lattice spacing errors, as well as effects of the quenched QED
approximation.
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