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1. Introduction and motivation

A realistic setup for studying many non-perturbative QCD properties is obtained by introduc-
ing two quark pairs, a light (l) mass degenerate one (u and d flavours: 2) and a heavier (h) mass
non-degenerate one (s and c flavours: 1+1): for short N f = 2+1+1. Monte Carlo simulations in
this setup are becoming increasingly feasible in the tmLQCD formulation [1, 2, 3] with action

S = SG[U ]+ ψ̄l Dl [U ] ψl + ψ̄h Dh[U ] ψh , ψl = [u,d] , ψh = [s,c] . (1.1)

Here SG is a suitable pure gauge action 1 , the Dirac operators read (in the “physical” quark basis)

Dl = γ∇̃− iγ5τ1Wcr + µl , Dh = γ∇̃− iγ5τ1Wcr + µh − εhτ3 , (1.2)
Wcr = −a

2∇∗∇+Mcr , Mcr = 1
2κcr

−4 , (1.3)

and εh is the bare s–c quark mass splitting. Among the general features of the above formulation [3]
we recall: automatic O(a) improvement [2], robust quark mass protection against “exceptional con-
figurations” [1], expected moderate CPU-cost for unquenched simulations (assuming metastability
problems related to the lattice phase structure are solved) [3]. The determinant of Dh (eq. (1.2)) is
real and positive provided |εh| < |µh|, which, if ZP/ZS < 1, induces some limitation on the renor-
malised quark masses, m̂c,s = Z−1

P (µh ± ZP
ZS

εh), one can simulate.
Through rescaling and chiral rotations of the quark fields (which do not affect the fermion

determinant, besides an irrelevant constant factor) and by setting µ̃l,h = 2κcrµl,h , ε̃l,h = 2κcrεl,h, the
lattice Dirac operators (eq. (1.2)) can be rewritten in a form more convenient for MC simulations:

(D̃l)2×2 =
[

γ∇̃+Wcr
]

2κcr + iµ̃lγ5τ3 , (D̃h)2×2 =
[

γ∇̃+Wcr
]

2κcr + iµ̃hγ5τ3 + ε̃hτ1 . (1.4)

As the value of κcr is a priori unknown, κcr is generically replaced by κ in the definition of µ̃l,h and
ε̃l,h

2. With these premises, we focus on the γ5-Hermitian partner of the Dirac operator(s) above,

Q̃2×2 =

[

Q̃+ iµ̃ ε̃γ5
ε̃γ5 Q̃− iµ̃

]

≡
[

Q̃+ ε̃γ5
ε̃γ5 Q̃−

]

, Q̃ ≡ γ5

(

γ∇̃− a
2∇∗∇+

1
2κ

−4
)

2κ , (1.5)

where we have for the moment dropped the quark pair labels l and h. In the mass degenerate case
(ε̃ = 0), a standard HMC algorithm can be employed in view of

det[Q̃2×2] = det[Q̃+Q̃−] = det[Q̃2
cr + µ2] ⇔

∫

Dφ e−φ †(Q̃+Q̃−)−1φ ,

with φ a single flavour pseudofermion field. This fits well our needs for the l quark pair. In the
mass non-degenerate case (ε̃ 6= 0) no plain HMC algorithm is straightforwardly applicable because

det[Q̃2×2] = det[Q̃+γ5Q̃−− ε̃2γ5] = det[Q̃+Q̃−− ε̃2Q̃+γ5Q̃−1
+ γ5] , (1.6)

cannot be reproduced by
∫

Dφ e−φ †(AA†)−1φ , with A a 1-flavour matrix. Owing to the flavour non-
diagonal structure of the matrix (1.5), we propose to deal with a two-flavour matrix, Q̃2×2Q̃†

2×2,
acting on a two-flavour pseudofermion field, Φ, and to use a polynomial P(s)' 1/

√
s, which gives

det[Q̃2×2] ⇔
∫

DΦ e−Φ†(Q̃2×2Q̃†
2×2)

−1/2Φ '
∫

DΦ e−Φ†P(Q̃2×2Q̃†
2×2)Φ , Φ =

(

φ ′

φ ′′

)

, (1.7)

1In unquenched computations the choice of Sg[U ] is important for the phase structure of the lattice model [3, 4, 5].
2Then tmLQCD at maximal twist is obtained by setting κ to a sensible estimate of κcr for all quark pairs [3].
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at least in the Φ-heatbath and the reweighting (or acceptance) correction. A PHMC algorithm [6, 7]
appears thus a natural choice to include the effects of the h quark pair in MC simulations.

2. A preconditioned (P)HMC algorithm for N f = 2+1+1 flavours

We outline here the mixed HMC-PHMC (briefly (P)HMC) algorithm we are developing, which
incorporates even-odd (EO) and mass-shift preconditionings [8]. Using different Molecular Dy-
namics (MD) time steps for different MD force contributions we expect to obtain a good perfor-
mance, in line with that recently achieved in simulations with two Wilson quark flavours [9, 10].

Denoting by Π the momenta conjugated to the gauge field, the MD-Hamiltonian reads

H2+1+1 =
1
2Π ·Π+SG +Φ†

h P
(

Q̂hQ̂†
h

)

h
Φh +

+ φ †
1
[

Q̂′
l(Q̂

′
l)

†]−1 φ1 +φ †
2

{

Q̂′
l

[

Q̂′′
l (Q̂

′′
l )

†]−1
(Q̂′

l)
†
}

φ2 , (2.1)

where P(Q̂hQ̂†
h) is a polynomial in Q̂hQ̂†

h approximating [Q̂hQ̂†
h]
−1/2 (see sect. 3) while in the l quark

sector mass-shift preconditioning is applied [4, 10] on top of EO preconditioning (see eq. (2.4) and
eq. (2.5)). In this way we need two pseudofermions, φ1 and φ2, for the l quark sector and a two-
flavour pseudofermion field, Φh for the h quark sector. The EO preconditioned Dirac operators are

Q̂h = γ5





1+ iµ̃hγ5 − Moe(1−iµ̃hγ5)Meo

1+µ̃2
h−ε̃2

h
ε̃h

(

1+ MoeMeo
1+µ̃2

h−ε̃2
h

)

ε̃h

(

1+ MoeMeo
1+µ̃2

h−ε̃2
h

)

1− iµ̃hγ5 − Moe(1+iµ̃hγ5)Meo

1+µ̃2
h−ε̃2

h



 , (2.2)

(Meo(oe))x,y = −κ ∑
µ

[

(1+ γµ)U†
µ(y)δy,x−µ̂ +(1− γµ)Uµ(x)δy,x+µ̂

]

, (2.3)

with Q̂h having a 2×2 flavour structure that is made apparent in the r.h.s. of eq. (2.2), and

Q̂′
l = γ5

[

1+ i(µ̃l +δ µ̃l)γ5 −
Moe(1− i(µ̃l +δ µ̃l)γ5)Meo

1+(µ̃l +δ µ̃l)
2

]

, (2.4)

Q̂′′
l = γ5

[

1+ iµ̃lγ5 −
Moe(1− iµ̃lγ5)Meo

1+ µ̃2
l

]

, (2.5)

with Q̂′
l and Q̂′′

l carrying the shifted (µ̃l +δ µ̃l) and the physical (µ̃l) twisted mass parameters. We
remark that (due to the absence of the Sheikholeslami–Wohlert term in the fermionic action) the
gauge field enters the Dirac matrices eqs. (2.2), (2.4) and (2.5) only through Meo and Moe, eq. (2.3).
It follows that the evaluation of the MD driving force Π̇ =−δU H2+1+1 can be, as usual, traced back
to that of δU Meo and δU Meo plus the (many) necessary applications of the relevant Dirac matrices.

With the (P)HMC update [7, 10] dictated by the Hamiltonian H2+1+1 (eq. (2.1)) one ends (af-
ter thermalisation) with a sample of gauge configurations equilibrated with respect to the effective
gauge action SG[U ]− log |det Q̂′′

l |2 + logdetP(Q̂hQ̂†
h). A way to correct for the polynomial approx-

imation of [Q̂hQ̂†
h]
−1/2 is to reweight all the observables O = O[U ] with a correction factor [7] that

provides a noisy estimate of det[Q̂hQ̂†
h]

1/2P(Q̂hQ̂†
h) = det Q̂hP(Q̂hQ̂†

h) (see also sect. 3).
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2.1 MD force contributions and multiple time scales

The MD driving force can be defined (omitting for brevity all indices) as

Π̇ = −δU H2+1+1 ≡ tr
[

δUF +F†δU†] , F = FG +Fh +Fl1 +Fl2 , (2.6)

where (see eq. (2.1)) the pure gauge contribution (FG) is completely standard, the l quark sector
contributions (Fl1 and Fl2) can be straightforwardly evaluated following Refs. [10, 11] and also the
h quark sector contribution (Fh) poses no principle problems (see sect. 3 for more details).

Based on Refs. [9, 10], we expect that for typical choices of SG, the lattice spacing and the
quark masses, one can have a hierarchy in the average (av) size of the individual force contributions,

|FG|av > |Fl1|av > |Fl2|av , |Fl1|av ≥ |Fh|av ≥ |Fl2|av , (2.7)

provided µ̃l > 0 is not too small and δ µ̃l > 0 is appropriately chosen [10]. |Fh|av is expected to be
small for heavy quark masses, i.e. large |µ̃h| and |µ̃h| > |ε̃h| 3.

The hierarchy in eq. (2.7) –once realised– suggests that an optimal performance is obtained by
implementing a MD leapfrog scheme where the force contributions (FG,Fh,Fl1,Fl2) enter associ-
ated to different time steps (δτG,δτh,δτl1,δτl2) so as to get

|FG|avδτG ' |Fh|avδτh ' |Fl1|avδτl1 ' |Fl2|avδτl2 , δτiNi ≡ τtra j , i = {G, l1, l2,h} , (2.8)

with (NG,Nh,Nl1,Nl2) a set of integers and τtra j ∼ 1 the time length of a MD trajectory.

2.2 Some possible algorithmic variants

Several modifications of the above (P)HMC algorithmic scheme are of course possible. For
instance, the correction for the polynomial approximation can be moved, fully or partially, from
the reweighting to a modified A/R Metropolis step [12, 13]. If this is done “fully” the modified
A/R step compensates for both det[

√

Q̂hQ̂†
hP(Q̂hQ̂†

h)] 6= 1 and the finite MD time step(s).
The update of the gauge field itself can be performed by means of a Multiboson-like algo-

rithm [14] using suitable polynomials to approximate the appropriate power of the inverse Her-
mitean Dirac matrices (see e.g. Ref. [13] for more details) relevant for the l and h quark sectors.

Another interesting possibility is to employ a non-standard HMC algorithm, whose MD is
guided by an Hamiltonian H̃ 6= H2+1+1 such that a good acceptance is still obtained in the A/R
test. One might try e.g. an H̃ that differs from H2+1+1 (eq. (2.1)) only by the replacement of
Φ†

h P(Q̂hQ̂†
h)hΦh with Φ†

h Q̂−1
h Φh. Numerical experience is of course crucial to test these possible

variants and choose the most efficient one.

3. Polynomial approximations for the h quark sector (s and c flavours)

The well known Chebyshev polynomial approximation method allows to approximate the in-
verse square root of the operator Ŝ = ρhQ̂hQ̂†

h, where ρh is a positive normalisation factor such that
on “practically all” gauge configurations the highest eigenvalue of Ŝ, say sH , satisfies 0.8 ≤ sH < 1.

3It is important that |ε̃h| is not too close to |µ̃h|. In fact, for |ε̃h| ≥ |µ̃h| not only the positivity of the determinant is
no longer guaranteed, but the matrix Q̂h (as well as Dh) can even develop zero eigenvalues.
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The polynomial P(Ŝ) = Pn,sL(Ŝ) of even degree n in Ŝ that is designed to approximate Ŝ−1/2 in the
eigenvalue interval [sL,1] 4 can be written (via a product representation with a normalisation factor
N > 0 and roots zk, k = 1, . . . ,n such that zn+1−k = z∗k ) in a manifestly positive form

Pn,sL(Ŝ) = N

n

∏
k=1

(Ŝ− zk) ⇒ Pn,sL ≡ Bn/2,sL
B†

n/2,sL
= Ŝ−1/2 [1+Rn,sL ] , (3.1)

where Rn,sL = Rn,sL(Ŝ) is called the relative fit error. Denoting by s a generic eigenvalue of Ŝ,
in Fig. 1 (left panel) we plot for illustration the relative fit error Rn,sL(s) for sL = 10−4 and a
value of n, namely n = 162, taken such that |Rn,sL(s)| ≤ 0.03. The chosen value of sL is rather
conservative, since it is very low compared to those that, based on simulation experience with
two mass degenerate quarks, we expect to have to face in the h quark sector while working with
realistic parameters. We see from Fig. 1 that Rn,sL(s) tends to increase when decreasing s ∈ [sL,1],
which we believe is acceptable in view of the expected non-high density of eigenvalues in the
low end of the spectrum of Ŝ. A conservative and an “effective” measure of the magnitude of
the relative fit error are thus given, respectively, by δIR ≡ maxs∈[sL,1] |Rn,sL(s)| = |Rn,sL(sL)| and
δUV ≡ maxs∈[0.5,1] |Rn,sL(s)| with δUV smaller than δIR (typically by an order of magnitude).

-1.5e-06

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 0  0.001  0.002  0.003  0.004  0.005

~ R
(s

)

s

~
n = 620

sL = 10-4

δIR = 10-6

-0.01

-0.005

 0

 0.005

 0.01

 0  0.2  0.4  0.6  0.8  1

R
(s

)

s

n = 162

sL = 10-4

δIR = 3.0 10-2

Figure 1: R(s) = Rn,sL(s) for (n,sL) = (162,10−4) (left) and R̃(s) = R̃ñ,sL(s) for (ñ,sL) = (620,10−4) (right).

For the task of computing the contribution Fh to the MD driving force we plan to exploit the
product representation of Pn,sL(Ŝ), see eq. (3.1) and then proceed analogously to Ref. [7]. A careful
ordering [15] of the n monomials in Ŝ together with 64 bit precision should be sufficient to keep
rounding errors under control for polynomials with n up to one thousand.

There are two places where a second polynomial approximation (or an equivalent method such
as a rational CG solver [16]) is needed. The first place is the generation of Φh distributed according
to exp[−Φ†

hPn,sL(Ŝ)Φh], see eq. (2.1). If rh is a random Gaussian (two flavour) vector and ξh an
arbitrary phase, we can find Φh = ξhB−1

n/2,sL
(Ŝ)rh by e.g. evaluating

Φh = P̃ñ,sL(Ŝ)B†
n/2,sL

(Ŝ)Q̂hrh , P̃ñ,sL(Ŝ) =
[√

ŜPn,sL(Ŝ)
]−1
[

1+ R̃ñ,sL(Ŝ)
]

, (3.2)

where P̃n,sL(Ŝ) is a new polynomial of degree ñ in Ŝ that approximates [
√

ŜPn,sL(Ŝ)]−1 with very
high precision in the eigenvalue interval [sL,1]. Values of the corresponding relative fit error, R̃ñ,sL ,

4The lowest eigenvalue of Ŝ, which we call sL can be estimated in the first stages of a simulation by starting with a
“trial” polynomial and refining the details of the polynomial progressively.
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not exceeding in modulus δ̃IR = 10−6 can be reached for a degree ñ = 620 , in the mentioned case
of sL = 10−4 and n = 162 , as it is illustrated in Fig. 1 (right panel). The evaluation of P̃n,sL(Ŝ)

times a vector can be safely performed in 64 bit arithmetics by using a recursive relation (such as
Clenshaw’s) that is stable against roundoff.

The other place where the high precision polynomial P̃n,sL(Ŝ) in eq. (3.2) may be useful is in
the evaluation of W [η ;U ] = exp

{

η†
(

1− [Pn,sL(Ŝ)
√

Ŝ]−1
)

η
}

, the noisy reweighting factor that is
needed to get the “exact” v.e.v. of a generic observable O = O[U ] (here η is the noise field) [6]

〈O〉 =
∫

Dµ[U ]
∫

Dη e−η†η W [η ;U ] O[U ] /
∫

Dµ[U ]
∫

Dη e−η†η W [η ;U ] ,

∫

Dµ[U ] ≡ ∫ DUe−SG[U ] det
[

P(Ŝ[U ])
]−1 ≡ Z(P)HMC . (3.3)

4. Conclusions and Acknowledgements

We discussed an exact algorithm for N f = 2 + 1 + 1 flavours of maximally twisted quarks.
Implementation of the algorithm and investigation of important numerical properties, such as the
spectrum of Q̂hQ̂†

h and the magnitude of the contribution Fh to the MD driving force, are in progress.
We thank K. Jansen for many valuable discussions and advises. The work of T.C is supported

by the Deutsche Forschungsgemeinschaft in the form of a Forschungsstipendium CH398/1.
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