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1. Improved Correction Step

The sign function in the overlap Dirac operator creates a discontinuity−2 d in the pseudo-
fermion contribution to the action whenever an eigenvalue of the kernel operator changes sign. To
conserve energy, we integrate up to the computer timeτc where the eigenvalue crosses, and intro-
duce a discontinuity in the kinetic energy which exactly cancels the jump in the pseudo-fermion
energy. A general area conserving and reversible update which can do this is:
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Π− is the original momentum,Π+ the final momentum, A is an arbitrary function of the gauge
field atτc, η is a unit vector normal to theλ = 0 surface, and theη i

j are unit vectors normal toη .
The original algorithm [5] setd1 = 4 d andd j = 0, and had O(τc) errors. We can use thed j terms
to cancel these errors, giving thetransmissionalgorithm:
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whereF± are the MD forces immediately before and after the crossing.We cannot use this algo-
rithm if it would lead to complexΠ+. In this case, we have toreflectof the λ = 0 surface, and
there will be no topological charge change. Figure 1 shows how the energy difference across the
correction step varies as a function of∆τ . It clearly shows that the energy has errors of at maximum
O(∆τ2).

2. Improved Leapfrog algorithm

In [6] an alternative leapfrog update for the molecular dynamics part of the HMC is suggested:

1. Π(τ + λ∆τ) = Π(τ)+ λ∆τΠ̇(τ).

2. U(τ + ∆τ/2) = ei(∆τ/2)Π(τ+λ∆τ)U(τ).

3. Π(τ +(1−λ )∆τ) = Π(τ)+ (1−2λ )∆τΠ̇(τ + λ∆τ).

4. U(τ + ∆τ) = ei(∆τ/2)Π(τ+(1−λ)∆τ)U(τ + ∆τ/2).

5. Π(τ + ∆τ) = Π(τ +(1−λ )∆τ)+ λ∆τΠ̇(τ +(1−λ )∆τ).

The optimal value ofλ is given in [6]. This algorithm has improved energy conservation, which
more than compensates for the need to invert the overlap operator twice. We have tested it on 44,
84, and 124 lattices, and found gains of around 30% (see section 7).
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Figure 1: Dependency of the energy on∆τ. The red lines are from top down: (∆τ, ∆τ2, ∆τ3).

3. Stout Smearing

We use the “stout links” proposed in [3]. As mentioned in [4] this improves the condition
number of the Wilson operator substantially, thus speedingup the inversions needed to construct
the overlap operator. We find however that there is a "phase transition" at a critical level of the
smearing parameter, leading to a sharp increase in the magnitude of the smallest eigenvalue of the
Wilson operator. This reduces the effectiveness of the smearing.

4. Hasenbusch acceleration

Hasenbusch acceleration has been used to speed up dynamicalsimulations. We introduce an
additional fermion flavour with a large mass, and by placing the two fermions on different time
scales we can in principle reduce the number of low mass inversions needed during a trajectory.
However, we saw little gain when using this method, partly because we were testing on large
masses, and partly because our overlap operators are usually well conditioned (see section 7).

5. Overlap eigenmode preconditioning

In the case of a topological nontrivial configuration, the spectrum of the overlap matrix in-
cludes a “zero mode”. Inversions of the overlap operator become prohibitively expensive when
simulating in the regime of small quark masses. Our ansatz isto calculate the smallestm eigen-
vectorsΨm and eigenvaluesλm of the overlap operator to a very low precision (e.g. 10−2) and use
them as a preconditioner for our CG preconditioner in our GMRESR inverter. Our preconditioner
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Figure 2: Convergence history for the preconditioning method on configuration with trivial topology

is:

P = 1+∑
m

(

αm

λm
−1

)

|Ψ〉m〈Ψ|m

Figures 2 and 2 show the convergence of CG with and without preconditioning using above pro-
jector. These plots were generated using a 84 dynamical configuration at massµ = 0.1, with the
inversions carried out at massµ = 0.03. Figure 2 shows the convergence history for the case of
a configuration with trivial topology; Figure 3 shows the convergence history for a configuration
with a “zero mode” induced by topology: Clearly in the lattercase the preconditioning offers great
possible gains, which — according to our experience — increase with the volume and decreasing
of the masses.

In an HMC simulation, using the previous eigenvectors as a starting point for the next eigen-
value calculation can dramatically reduce the time needed,although it is unclear how large an effect
this leads has on the reversibility of the MD.
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Figure 3: Convergence history for the preconditioning method on configuration with non trivial topology

6. Non area conserving correction step

It is possible to use a non area conserving molecular dynamics update by including the Jaco-
bian in the Metropolis accept/reject step1. The detailed balance condition reads:

P[U ′←U ]WC[U ] =
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The most general transmission update which is reversible and conserves∆ is:

exp−(Π+,η)2/2 = exp−(Π−,η)2−2d−exp−r2
0/2−2d +exp−r2

0/2

For r0 = ∞, this gives the usual area conserving transmission formulaequation (1.1). One has to
reflect if the transmission formula gives a complex (Π+,η). By tuning r0, we can improve the
transmission rate. The results displayed in the tables of section 7 were obtained usingr0 = 1, and
give a 50% improvement in the transmission rate.

1We thank A. Borici for pointing this out to us
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7. Results

In this section we summarise the results referred to in the previous sections.

Type time Acc nmd trans./traj. refl./traj. nt

normal 1897(60) 94% 40 0.0738(240) 1.348(100) 325
has 1986(20) 88% 40 0.0521(311) 1.059(94) 307
imp 1420(10) 94% 15 0.0535(233) 0.876(98) 299
imphas 1594(40) 75% 15 0.0772(336) 1.093(118) 324
impnap 1480(10) 95% 15 0.117(34) 1.336(136) 310
impnaphas 1611(60) 78% 15 0.110(21) 0.832(159) 155

µ = 0.05

Type time Acc nmd trans./traj. refl./traj. nt

normal 1816(20) 95% 40 0.447(64) 0.938(80) 465
has 2100(90) 90% 40 0.569(65) 0.880(65) 374
imp 1479(20) 96% 15 0.371(43) 0.947(62) 533
imphas 1470(60) 90% 15 0.413(53) 0.531(76) 518
impnap 1445(50) 95% 15 0.674(89) 1.818(147) 209
impnaphas N/A 94% 15 0.663(69) 1.370(114) 281

µ = 0.2

In these tables “has” denotes Hasenbusch acceleration, “imp” denotes usage of the precondi-
tioner and “nap” refers to the non area preserving update.
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