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1. Standard Formulation of CP(N — 1) Models

The manifoldCP(N — 1) = SU(N)/U (N —1) is a(2N — 2)-dimensional coset space relevant
in the context of the spontaneous breakdown oSBMN) symmetry to &J (N — 1) subgroup. In
particular, in more than two space-time dimensioths-(2) the corresponding Goldstone bosons
are described b x N matrix-valued field$(x) € CP(N — 1) which obey

P(x)? = P(x), P(X)T = P(x), TrP(x) = 1. (1.1)

For d = 2 the Hohenberg-Mermin-Wagner-Coleman theorem implias tiire SU(N) symmetry
cannot break spontaneously. Correspondingly, similar-tim#ensional non-Abelian gauge the-
ories, the fieldsP(x) develop a mass-gap nonperturbatively. Motivated by thdmserwations,
D’Adda, Di Vecchia, and Luscher [1] introduc&dP(N — 1) models as interesting toy models
for QCD. The corresponding Euclidean action is given by

SP| = / d?x g—lzTr[c?,lPduP], (1.2)

whereg? is the dimensionless coupling constant. Note that thisoads invariant under global
Q € SU(N) transformations
P(x)' = QP(x)Q, (1.3)

and under charge conjugati@which acts a§P(x) = P(x)*.

2. D-Theory Formulation of CP(N — 1) Models

In this section we describe an alternative formulation ddlfieeory in which the 2-dimensional
CP(N — 1) model emerges from the dimensional reduction of discret@ahi@s — in this case
SU(N) quantum spins irf2+ 1) space-time dimensions. The dimensional reduction of eliscr
variables is the key ingredient of D-theory, which providesalternative nonperturbative regular-
ization of field theory. In D-theory we start from a ferromagin system oSU(N) quantum spins
located at the sites of a 2-dimensional periodic square lattice. TBId(N) spins are represented
by Hermitean operatofE2 = %)\;3 (Gell-Mann matrices for the triplet representatioraf(3)) that
generate the groupU(N) and thus obey

. 1
[T, Ty] = iy fancT, TH(TETY) = 5800 (2.1)

In principle, these generators can be taken in any irreticépresentation dU(N). However,
as we will see later, not all representations lead to speoias symmetry breaking fro8IU(N) to
U (N —1) and thus tcCP(N — 1) models. The Hamilton operator for &J(N) ferromagnet takes
the form

H=-JY T2T3 (2.2)
XZ. X

X+i7

whereJ > 0 is the exchange coupling. By construction, the Hamiltoerafor is invariant under
the globalSU(N) symmetry, i.e. it commutes with the total spin given by

T =y TR (2.3)
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The HamiltoniarH describes the evolution of the quantum spin system in aa etnension
of finite extentf. In D-theory this extra dimension is not the Euclidean timh¢he target theory,
which is part of the 2-dimensional lattice. Instead, it issdditional compactified dimension which
ultimately disappears via dimensional reduction. The tarpartition function

Z=Trexp(—(BH) (2.4)

(with the trace extending over the Hilbert space) givestosgeriodic boundary conditions in the
extra dimension.

The ground state of the quantum spin system has a brokenl gibli&l) symmetry. The
choice of theSU(N) representation determines the symmetry breaking patéerchoose a totally
symmetricSU(N) representation corresponding to a Young tableau with desiogv containingn
boxes. Itis easy to construct the ground states oBth@N ) ferromagnet, and one finds spontaneous
symmetry breaking frorBU(N) toU (N —1). Consequently, there afil? —1) — (N —1)2=2N -2
massless Goldstone bosons described by fR{gsin the coset spac®U(N)/U(N—1) =CP(N —

1). In the leading order of chiral perturbation theory the Eledn action for the Goldstone boson
fields is given by

B 1
SP) = / dt / d2XTr[psc3uP0uP—$ / dt Pa,Pa;P]. 2.5)
0 0

Here ps is the spin stiffness, which is analogous to the pion decagtamt in QCD. The second
term in eq.(2.5) is a Wess-Zumino-Witten term which invehan integral over an interpolation
parameter.

For 3 = o the system then has a spontaneously broken global symmaryhas massless
Goldstone bosons. However, as soorBdsecomes finite, due to the Hohenberg-Mermin-Wagner-
Coleman theorem, the symmetry can no longer be broken, andequently, the Goldstone bosons
pick up a small mase nonperturbatively. As a result, the corresponding coticaengthé =
1/mbecomes finite and tH&U(N) symmetry is restored over that length scale. The questisasar
if & is bigger or smaller than the extefitof the extra dimension. Whef > 8 the Goldstone
boson field is essentially constant along the extra dimeraial the system undergoes dimensional
reduction. Since the Wess-Zumino-Witten term vanishediétd constant irt, after dimensional
reduction the action reduces to

SP] = Bps / d?x Tr[d,Pa,P), (2.6)
which is just the action of the 2-d targ@P(N — 1) model. The coupling constant of the 2-d model
is determined by the extent of the extra dimension and isngdye

1

¢
Due to asymptotic freedom of the 2@P(N — 1) model, for smallg® the correlation length is
exponentially large, i.e.

= Bps. (2.7)

& Oexp(4nBps/N). (2.8)
HereN/4mis the 1-loop coefficient of the perturbatiyifunction. Indeed, one sees théats 3
as long ag3 itself is sufficiently large. In particular, somewhat ccemintuitively, dimensional
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reduction happens in the largklimit becauseé then grows exponentially. In D-theory one ap-
proaches the continuum limit not by varying a bare coupliagstant but by increasing the extent
B of the extra dimension. This mechanism of dimensional rédiiof discrete variables is generic
and occurs in all asymptotically free D-theory models [2, Blshould be noted that (just like in
the standard approach) no fine-tuning is needed to apprbadontinuum limit.

3. Path Integral Representation of SU(N) Quantum Spin Systems

Let us construct a path integral representation for thetjpertfunction Z of the SU(N) quan-
tum spin ferromagnet introduced above. In an intermedi@ye we introduce a lattice in the Eu-
clidean time direction, using a Trotter decomposition & Heamiltonian. However, since we are
dealing with discrete variables, the path integral is catgly well-defined even in continuous
Euclidean time. Also the cluster algorithm to be describrethie following section can operate
directly in the Euclidean time continuum [4]. Hence, the ffirsults are completely independent
of the Trotter decomposition. In 2 spatial dimensions (vatheven extent) we decompose the
Hamilton operator into 4 terms

H =Hi+H2+Hsz+Hg, (3.1)
with
H172 = Z hx7i7 H374 = Z hx7i- (3-2)
x=(x1,%0) X=(X1,X0)
xjeven xjodd
The individual contributions
hyi =—J 'I;(aTXif, (3.3)

to a givenH; commute with each other, but two differedf do not commute. Using the Trotter
formula, the partition function then takes the form

Z:'\Liianr{exp(—sHl) exp(—&H,) exp(—&H3) exp(—eHa) MM . (3.4)

We have introduced/ Euclidean time-slices witls = /M being the lattice spacing in the Eu-
clidean time direction. Inserting complete sets of spitestq € {u,d,s,...} the partition function
takes the form

2= 5 x-S (3.5)
q

The sum extends over configuratidagof spinsq(x,t) on a(2+ 1)-dimensional space-time lattice
of points(x,t). The Boltzmann factor is a product of space-time plaquettgributions with

exp(—s[u,u,u,u]) = exp(—g[d,d,d,d]) =1,

exp(—s[u,d,u,d]) = exp(—s[d,u,d,u]) = =[14exp(—&J)],
exp(—s[u,d,d,u]) = exp(—s[d,u,u,d]) = 5[1— exp(—&Jd)]. (3.6)

In these expressions the flavareandd can be permuted to other values. All the other Boltzmann
factors are zero, which implies several constraints omatbconfigurations.
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4. Cluster Algorithm for SU(N) Quantum Ferromagnets

Let us now discuss the cluster algorithm for ®€(N) quantum ferromagnet. Just like the
original SU(2) loop-cluster algorithm [5, 6], th&U(N) cluster algorithm builds a closed loop
connecting neighboring lattice points with the spin in thene quantum state, and then changes
the state of all those spins to a different randomly chosemngon value. To begin cluster growth,
an initial lattice point(x,t) is picked at random. The spin located at that point partiegpan
two plaquette interactions, one before and one dftédne picks one interaction arbitrarily and
considers the states of the other spins on that plaguette oDthe corners of this interaction
plagquette will be the next point on the loop. For configunadio; = [u,d, u,d] or [d,u,d, u] the next
point is the time-like neighbor aofx,t) on the plaquette, while for configuratio®@s = [u,d,d, ]
or [d,u,u,d] the next point is the diagonal neighbor. If the states aréhallsame, i.e. fo€3; =
[u,u,u,u] or [d,d,d,d], with probability

p= %[1+exp(—s\])] (4.2)

the next point on the loop is again the time-like neighbod aith probability (1 — p) it is the
diagonal neighbor. The next point on the loop belongs toterdnteraction plaquette on which
the same process is repeated. In this way the loop growsitlinially closes.

5. Critical slowing down in the continuum limit

In order to determine the efficiency of this algorithm one teestudy its critical slowing down
when one approaches the continuum limit. We have used a-ohudtier algorithm for arsU(3)
quantum ferromagnet which corresponds ©R{2) model. As an observable, we have chosen the
uniform magnetization which gives the cleanest signal,

M= Z(éq(x,t),u - 5q(x,t),d)- (5.1)
X7

The autocorrelation time of the magnetization is determined from the exponenti&idlof the
autocorrelation function. The simulations have been peréadl at fixed ratid /L ~ 2.5, for lattice
sizesL/a = 20, 40, 80, 160, 320, 640 and the corresponding correldtiogthsé /a = 8.87(1),
16.76(1), 32.26(3), 64.6(1), 123.4(2), 253(1). Remankahk autocorrelation time doesn’t change
when one varies the size of the system and the correlatigileand stays close tbx 1 sweep.
This is a strong indication for an almost perfect algorithimeve the critical slowing down is com-
pletely eliminated.

6. Conclusions

Due to a no-go theorem [7], so far no efficient cluster alhponithas been developed for
CP(N — 1) models in the usual Wilson formulation. In the D-theory foitation, one has been
able to perform simulations using a multi-cluster algaritfor large correlation lengths and with a
corresponding autocorrelation time of about one sweep. dlably, there is almost no variation
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of the autocorrelation time when one spans a factor of ab@in ghe correlation length. The crit-
ical slowing down of the algorithm in the continuum limit isthce completely eliminated. These
results can be compared to the ones obtained with the effitieltigrid algorithm [8]. Our method
has the advantage to obtain autocorrelation times more2héimes smaller for similar correlation
lengths, the multi-cluster algorithm is in addition sttaigrward to implement.

With the D-theory regularization, it has recently also bpessible to simulat€P(N — 1) models
at non-trivial 8-vacuum angle [9] which is normally impossible due to a sewgn problem.
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