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1. Introduction

Numerical simulations of dynamical fermions within thenfrework of the staggered formal-
ism are both computationally cost effective and phenonuanicélly successful. Exploiting the
advantageous properties of an improved staggered ferraramufation, various collaborations are
performing high-precision lattice QCD calculations the¢ & excellent agreement with experi-
mentally known measurements [1]. However, this succeskigled by the long-standing prob-
lematic issue of the validity of the fourth root approxinaaiti The staggered fermion describes, in
fact, four tastes on the lattice, so in order to study QCD Wwith= 2 or Ny = 2+ 1, a Boltzmann
weighting is used that contains a fractional power of thenfen determinant. Because of taste-
breaking at nonzero lattice spacing, taking the fractigoaler of the staggered determinant before
restoring taste symmetry is conceptually nontrivial. T$gue whether the fourth root prescription
gives a lattice theory in the right universality class torogjuce QCD is yet unresolved and the
phenomenological success of the staggered formulatiomdwted up the discussion. In the past
years various numerical investigations [2] have addresssadoncern. Recently a direct approach
was adopted towards establishing whether the universahiss is the right one: if a single-taste
local fermion action can be found, whose determinant is letguihe fourth root of the staggered
fermion determinant up to cutoff effects

lim ( detDg)* = detD detH (1.1)

a—0
(whereD is a local Dirac operator and is local and contains only cutoff effects) then the fourth
root prescription can be consistently fitted into the framwof a local field theory. In the free
theory numerical [3] and analytical studies [4, 5] showeal thuch a local operator exists. In
particular, in [5] Shamir applied renormalization groupdiing to the free staggered operaiy
in the spin® taste representation. Aftarblocking step€Qy, the fermionic degrees of freedom live
on the coarse lattice with lattice spaciag= 2"a and the determinant of the staggered operator
decomposes as dBty(a = 2 "a.) = detD,, detG,'. More details can be found in [5], where
it was proved analytically that the blocked propagdigrt = a1+ QnD, Q! factorizes, in the
limit n — o, asD,! = Drg® | and thatG,* = Do+ a Q/Qy is a local operator that contains only
cutoff effects. This completes the proof that in the contimulimit, i.e. a=2"a;) — 0, the
decompositions of Eq. (1.1) holds in the free case.

2. Renormalization group transformation in the interacting case

In this section we briefly discuss the renormalization gr@Rfs) program adopted to test
the interacting case. The new complication is that a mapforg the one-component staggered
fermion basis to the spi® taste basis is not unique. We define the interacting theomén
one-component formalism. The first fermion RG blocking sfarmation is used to perform the
transition to the spi® taste representation:

Qi)™ (0= 5 5 IRV W2k 20t Dp(2xt) @1)

=01
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wherea anda are Dirac spin and taste indices respectively. We requieptrallel transporters
W (2x,2x+r) to be a sum over all the shortest pattsetween the origin2and the other sixteen
sites X+ r of the hypercube. The sum over different paths is thoughetuce the breaking
of hypercubic symmetry; however, the choice to parallehgpmrt all the points within a given
hypercube to the corner= 0 unavoidably introduces some asymmetries. The subsed@nt
steps are a covariant generalization of the arithmetic rmeamZ hypercube used in [5] :

(Qny) () =2"* 20 W (2X, 2x+ 1) P(2x+T1)  n>1 (2.2)
ry=01

The shortest paths that compose the parallel transp®#¢2x, 2x+r) in Eq. (2.2) are constructed
from links of the blocked lattice (with lattice spacing&. These blocked links are built following
a program suggested in [7]. In detail, the links that live ba fine lattice (with lattice spacing
2"-1 @) are twice APE smeared and projected baclSté(3). The blocked links are then built
multiplying two of these fine smeared links in line. Once thecking kernels are defined we
project the nondiagonal piece of the blocked propag@fph onto the spin® taste Clifford space:

(QnDg "Rl (xy =0) = ; Fs@rl Mst(xy=0). (2.3)

Herex andy = 0 ? live on the coarsest lattice ar@, can be regarded as a 'big’ blocking step
Qn = QnQn_1)--- Q) that transforms the original lattice with lattice spacato the blocked
lattice with lattice spacing; = 2"a. The coefficientdst(x,y = 0) of the projection in Eq. (2.3) are
evaluated numerically and averaged over two differenicignsembles. We fixed Lorentz gauge
before doing any RG blocking. Parameters of the simulatamesshown in Table 1. Applying a
different number of RG steps, on each of these two ensembles, the resulting blockeddatti
have the same coarse-lattice spacingof 0.72 fm. This allowed us to see how the coefficients
MsT scale with one additional RG blocking step.

unblocked lattice| 16° x 48 | 40° x 96
a 0.18 fm | 0.09 fm
ms a 0.125 0.05
number of RGT’s| 2 3
blocked lattice | 4°x12 | 5°x 12
ac 0.72fm | 0.72 fm
number of cfgs | 148 56

Table 1: Simulation parameters

As a consistency check on the blocking procedure describedea we evaluated the mass
of the (sS) meson. In fact, the spectrum on the blocked lattice is expetd be identical to the
spectrum in the original theory. The meson mass can be dgdldlirectly from the coefficients
Mst(x,y) of Eq. (2.3):

IThese are built using APE smeared links of the originaldattb be consistent with the RG program adopted for
the subsequent RG steps.
2The fermion source is defined at the origin.
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C&t) = ¥ <Tr(wsMrMrlrsM) [Msr(t,) >, (2.4)
ST %
where thel's's and thel't 1’s are the 16 Dirac matrices in the normal and adjomt=¢ y;,) rep-
resentation respectively. In Figure 1 we present the tadtérsys for the meson masses evaluated
on the two blocked lattices. At this level of statistics, tleerease in splitting from=2ton=3
is consistent with the expected(a’a) or ¢ (a?a?), but the preliminary RG blocked splittings are
systematically higher than values obtained in direct mesgsants at much lighter valence quark
masses. Further study is needed.
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Figure 1: Pseudoscalar taste splittings after 2 and 3 RG blockingsiis of r;, the distance at which the
static quark potential satisfiesdV /dr = 1.

3. Preliminary results

In this preliminary study we have analyzed for various dispimentgx — y| the dominant
terms in Eqg. (2.3) that are also present in the free theory:

S @DALY (%Y) + (52 1B (0y) + 5 (521518, (6 y) + (1 ©1) CV(xy) 4o
H V#U
(3.1)

Comparing Figures 2 and 3, it is remarkable to see that isgrgdoy only one unit the number
of RG blocking transformations the mass tefin® 1) ( [J ) becomes larger than the taste breaking
term s ® 157; (<) for any directioni for displacemenix—y| = 1. This is in agreement with what
we expect from the free theory: in the linnit— o the only terms ifMgt that should survive are
diagonal in taste space.

Other terms in Eq. (3.1) are seen in our simulations. Theitrdmution is 10— 1000 times
smaller than the leading kinetic terAtL”) in Eq. (3.1) and this make it difficult to identify the
terms that are statistically relevant. We need to increbsentimber of configurations to have a
better understanding of the statistics. Besides this jssug crucial to know how these terms
scale withn to determine whether the blocked propagator becomes dihgotaste space in the
interacting theory as it does in the free theory. Howeverlament that can play an important
role in this scaling is the breaking of the hypercubic symmnetaused by the introduction of the
parallel transporters, as it has been briefly discussederptavious section. In fact, Figures 2
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Figure2: Mgt aftern = 2 RG steps. Figure 3: Mgt aftern = 3 RG steps.

and 3 suggest that the blocking procedure is introducingeslaypercubic asymmetries, since the
coefficientsMst(x,y) are not perfectly degenerate under reflections about tineipal axes. In
order to investigate further these terms, present onlyanrtteracting theory, it is necessary either
to quantify the hypercubic symmetry breaking or to redefimeRG blocking transformations in
order to guarantee hypercubic invariance (one suggestipresented at this conference [6]).

4. Interacting theory vsfreetheory

In [5] the scaling properties of the taste breaking teBﬂ‘é( p) were evaluated analytically. It
was shown in momentum space that they scale likKe @niformly in p, so the blocked propagator
becomes diagonal in taste space, wher «. Postponing the issue of the breaking of hypercubic
symmetry to a later study, we consider here a linear combimaif the amplitudegMsT(x,y)|
under reflections and rotations about the principal axeBidares 4 and 5 we show how the ratios
between the taste violating terms and the leading kinetin #&" scale withn.
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Figure 4. Taste breaking terrB(™ over the ki-  Figure 5: Taste breaking terr8 (™ over the ki-
netic term. netic term.

Our data show that they diminish whens increased and that their magnitudes are also re-
markably in agreement with the free theory represented Iy iwes. In Figures 6 and 7 we show
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the scaling properties of the taste breaking term dividethbymass term. The interacting theory
agrees with the free theory for displacememts y| = 1,2, however a discrepancy is seen at zero
displacement where the interacting theory does not scalrscted. The zero displacement is not
interesting when discussing locality thus this behavieendf not well understood, does not spoil
the aood scalina properties we are seeind in the interattiegry.
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Figure6: Taste breaking term divided by the mass Figure7: Taste breaking term divided by the mass
term: interacting theory term: free theory.

The conclusion that we can draw from this preliminary stuglthat the blocked propagator in
the interacting case is dominated by the same terms prestre free theory and that these terms
scale as expected to make the decomposition of Eq. (1. 1lippmsEhe statistical relevance and the
scaling properties of other terms seen in the interactiegrthis still under investigation.
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