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We give some new performance results for the Hybrid MontédgG&tMC) simulation of dynam-
ical clover-improved Wilson fermions using an improvedy@fermion action. The generalisa-
tion of even-odd preconditioning for the standard Wilsomfien matrix to the clover-improved
case is not unique. In the literature the so called symmatiat asymmetric versions are dis-
cussed. Most of the previous simulations of dynamical aléwvgproved Wilson fermions were
done with the asymmetric version. Only recently, the JLQ®@Daboration has pointed out that
the symmetric version leads to a better performance of the&€Hilgorithm. Here, we show that
also in combination with an improved pseudo-fermion acgttbe symmetric version of even-odd
preconditioning leads to a better performance. For outdisiquark mass, which corresponds to
mps/My =~ 0.44, we see a gain in performance by a factor of about 1.3.
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1. Introduction

Today, the standard method to simulated lattice QCD with dynamical fermions is thvédHy
Monte Carlo (HMC) algorithm[]1] or related algorithms like the Polynomial Hytidnte Carlo
(PHMC) or the Rational Hybrid Monte Carlo (RHMC) algorithm. Here we déscimprovements
of the HMC simulation of clover-improved][2] Wilson fermions. In the followirigy simplicity,
we restrict ourself to the case of two degenerate flavours. In thisaasggurations should be gen-
erated with a probability proportional B[U] = exp(—Ss[U]) detM[U]?, whereSs[U] is the gauge
action (in the following we shall use the Wilson gauge action) BHd| is the fermion matrix.
The determinant is too expensive (casVolumé) to be evaluated in the numerical simulation.
Therefore so called pseudo-fermions are introduced:

det? = demM’ O /Qqﬂ/@qo exp(—|M~1g?) . (1.1)

In order to facilitate a (non-physical) dynamics of the gauge-field, yethan auxiliary field is
introduced: conjugate momenrkaor the gauge-field. The resulting Hamiltonian is

B 1
H(U,0,P)=S5(U)+ M9+ 55 TR, . (1.2)
X;H

An update-step (often called trajectory) of the HMC algorithm is composed of

e Heatbath of the conjugate momemtand the Pseudo-fermion fietd

e Evolution of U andP according to the equations of motion for some fixed tim@ the
following t = 1), using a numerical integration method (e.g. the leapfrog scheme)

e Accept the resultingy’ andP’ with the probability
A=min[1,exp— (U’ @,P)+exp—# (U, @,P)]

Note that for an exact integration of the equations of motigfi(U’, ¢,P’) = 57 (U, ¢,P), and
hence the acceptance rate is 1 in this limit. Recent large scale simulations (sef.€[f§]) with
dynamical Wilson fermions were performed at rather large quark massesdebated whether,
using chiral perturbation theory, the numerical results can be extragdfatde physical quark
masses. Therefore it would be highly desirable to reach lighter massesiartiegical simulation.
However, the costs of the simulation increase rapidly as the quark massasesr The main
reasons for this increase are the following: As the quarks become liglketeptidition number of
the fermion matrix increases. As a result, more iterations are needed to slireetlr systems of
eqguations that need to be evaluated frequently in the HMC simulation. Thedspoablem is that
the step size of the integration scheme (e.g. leapfrog) has to be decvatiseécreasing quark
mass to maintain a constant acceptance rate.

Recently it has been demonstrated that the latter problem can be avoidel@astaeduced
by using alternativeq|4] ¢] § [} B, ] 10] to the standard pseududeas[L.]l. Let us discuss in
detail the approach of refd][d, 5\ matricesw are constructed such thisit = |‘|iN:1V\/.. For each
of these matrices a pseudo-fermion is introduced:

demm’ O [Dlgl] [Dlay... [Dlgl] Dl exp(—_iwvrlcaz) (1.3)
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The matricesM should be chosen such that they have a smaller condition numbeMha&ur
choice of the matrice® is quite simple, we shift the fermion matrix by a constant, which corre-
sponds to a larger fermion mass. Bor= 2, this results ity = M + p andWs = (M + p) M.
The obvious generalization % > 2 is given by

Wi=M+p1, W = (M +pi*1)_1(M +pl) ) Wy = (M +prl)_lM . (14)

Preconditioning is a standard method in the solution of system of linear egsiafitie aim
is to reduce the condition number of the matrix and this way to reduce the nurhiterations
needed to solve the problem. Even-odd preconditioning for the standigsdrifermion matrix
[L] relies on the fact that the hopping tekinconnects only nearest neighbour sites on the lattice.
As result, the fermion determinant can be expressed a4 detleM with M = 1,5 — HoeHeo,
whereo indicates odd and even sites. Even-odd preconditioning can be easily combined with the
alternative pseudo-fermion action discussed above, by replatimgM in eq. Tp.

The generalization to the clover-improved case has been discussedfiffiet. et us write the
clover-improved Wilson matrix in the forfl = (1+T) — H, where the clover-term is represented
by the matrixT which is diagonal in space-time. Using an even-odd decomposition of the lattice
we can write the fermion matrix as

leet+Tee Heo
M = (1.5)
Hoe oo+ Too

One can rewrite the fermion determinant either as (asymmetric even-oduhgiganing)
deM O det(lee+ Tee) deMasym With Masym= Loo+ Too— Hoe(lee+ Tee) tHeo  (1.6)
Or alternatively in a more symmetric form as (symmetric even-odd precondigpnin
detM O det(1oo + Too) det{lee+ Tee) deMsym (1.7)
with Msym= 1oo— (100+Too)71Hoe(1ee+ Tee)leeo (1.8)
In the HMC, for dels?léYMor del\?l,iSYMpseudo-fermions are used, while dgb+ Too) and detloo+
Too) are exactly evaluated.

Here we should note that preconditioning not only reduces the effquined to solve the
systems linear equations, but also has an effect on the step-size in theskiM@tion. E.g. in
ref. [[L3] it had been noticed that for standard Wilson fermions, repigidirby M in the pseudo-
fermion action [(1]1) allows to increase the step-size of the integration scheatabtor of about
1.3 without decreasing the acceptance rate. Given this fact, one shadk atether for clover-
improved Wilson fermions the use sy v or Masymin the pseudo-fermion action allows for a
larger step size. Recently, the JLQCD Collaborat[¢n [3] has pointed ayfttheombination with
the standard pseudo-fermion action and the leap-frog integration sckigm&/mmetric version
(L.7) of the even-odd preconditioning is more efficient than the asymmetiflop) that was used
in most of the previous studies. In particular, the step-size, for fixeeptaoce rate, is larger by
a factor of 13 for the symmetric version than for the asymmetric one[]in [5] we have ortiydtes
the improved pseudo-fermion action in combination with the asymmetric vefsigrofthée even-
odd preconditioning. Here we study the combination of an improved psfeudoen action with
the symmetric versio{ (3.7) of even-odd preconditioning of the clover-imgatdVilson fermion
matrix.
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scheme| P | Nmg | Paco, @asymm| Pace, Symm
L 05| 25 0.770(3) 0.847(5)
S 05| 10 0.883(3) 0.934(2)

Table 1: Runs for the8® x 24 lattice atf3 = 5.2, csw= 1.76 andk = 0.137. L indicates the leap-frog
integration scheme, while S indicates the partially impabscheme of Sexton and Weingartpris the free
parameter of the improved pseudo-fermion actidfy the number of time-steps of each trajectdPy. is
the acceptance rate.

2. Numerical results

In ref. [B] we found for extended runs on & 8 24 lattice atB = 5.2, cqy = 1.76 andk =
0.137 that autocorrelation times in units of trajectories do not depend, far fiagectory length
t and acceptance raR., on the pseudo-fermion action and the integration scheme that is used.
A similar result holds for the two dimensional Schwinger modE! [4]. Also the kitian with
1500 trajectories of a £6< 32 lattice at = 5.2, csy = 2.0171 andk = 0.1358 reported in[[8]
supports this observation. The simulations discussed in the following dreexily long to give
reliable estimates for acceptance rates. However they are too shortvidepsafficiently accurate
estimates of autocorrelation times. Therefore, we have to rely, supportde: wesults reported
above, on the assumption that the choice of the pseudo-fermion actioefydgtie influence on
autocorrelation times. In the following we have used the leap-frog integrativeme and, for most
of the simulations, a partially improved scheme suggested by Sexton and Vtem(szee eq. (6.4)
of ref. [I8]). Comparing the performance of HMC simulations with these tw@sies, one has
to take into account that in one elementary step the variation of the action wiilcte® the
gauge-field has to be computed once for the leap-frog scheme but twitefpartially improved
scheme. Sexton and Weingart¢n][16] also proposed to use differpratizes for different parts of
the action. One should use a small step-size for the numerically cheapfthagsaction and larger
ones for the expensive parts. While in ref§. [J6[]7_9, 10] differéep-sizes are used for different
parts of the pseudo-fermion action, we use a unique step-size for tHe pgeudo-fermion action
and a smaller step-size for the gauge action.

2.1 Results for two pseudo-fermion fields

As a first test, we simulated & & 24 lattice atB = 5.2, csyy = 1.76 andk = 0.137. Results
for the acceptance rates are given in tdble 1. The numbers for the asyenrast [[1]6) are taken
from ref. [§]. For the symmetric casg (1.7) we did not search again &opghimal value of the
parametep, but used the same value as in the simulations with the asymmetric preconditioning.
We see that the acceptance rates are clearly larger for the symmetriagiteeong than for the
asymmetric one.

2.2 Results for 3 pseudo-fermion fields

In ref. [@] it had been demonstrated that at least for small quark méssesrformance of the
HMC can be further improved by using 3 pseudo-fermion fields insteadAd&in the simulations
were performed aB = 5.2, however here we usg,, = 2.0171, which is the final result of the
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K P1 P2 de Pacc
0.135 | 0.7] 0.1 25 | 0.76(2)
0.1355/ 0.5| 0.05| 30 | 0.78(2)

Table 2: Runs for the24® x 48 lattice atB = 5.2 andcsy = 2.0171

Precond. | p1 | p2 Nmd Pacc
Asymmetric| 0.4 | 0.03| 25 | 0.809(6)
Symmetric | 0.4 | 0.03| 20 | 0.81(2)

Table 3: Runs for thel6® x 32 lattice atB = 5.2, cqw = 2.0171andk = 0.1358

ALPHA-collaboration [1}] for the clover-coefficient. We performed sintigias for k = 0.135,
0.1355 and (L358. At these values df, the ratio of pseudoscalar and vector meson masses is
mps/my ~ 0.71,0.60 [3] and 044 3], respectively. Note that in the case of r§f. [3] the simulations
were not exactly performed af,, = 2.0171 but atsy = 2.02 instead. In ref.[]3] for lattices of the
size 20 x 48, atk = 0.134,0.135 and 0.1355 usinding = 80,100 and 160 an acceptance rate
of Pycc = 0.676(5),0.666(6) and 0678(7) had been obtainedN,q is the number of step of the
leapfrog per trajectory. They have used the standard pseudo-feaoiimm with the symmetric
even-odd preconditioning (1.7) and the leapfrog integration schemeseThambers clearly show
that with the standard pseudo-fermion actiyy has to be increased with decreasing quark mass
to maintain a given acceptance rate. We have performed simulations on thy stigier 24 x

48 lattice. We have used the partially improved integration scheme discusseel ae have
generated about 200 trajectories after equilibrisation. The results mmaised in tabl¢] 2. It is
not completely trivial to compare with ref[][3]; we use slightly larger latticed anr acceptance
rate is larger. On the other hand there is some overhead in our simulations theeadditional
pseudo-fermion fields. However, the main factor certainly due to the nuiNyheof steps needed
for one trajectory. Taking these numbers we get/1@0 25) = 2 and 160(2 x 30) = 2.6666

in favour of the improved pseudo-fermions fer= 0.135 and 01355, respectively. Note, that
we have taken into account the fact that per step, the variation of the@$eumion action with
respect to the gauge-field has to be computed twice as often for the partiatlyviedpscheme as
for the leapfrog scheme. Finally we compare with the simulation ofaBR lattice aik = 0.1358
presented by the UKQCD collaboration in ref.][15]. The used the leaftbgme, asymmetric
even-odd preconditioning and the standard pseudo-fermion actioty. uBeelN,q = 400. In ref.

[B] we had already reported results for asymmetric even-odd precamidigioUsing the symmetric
even-odd preconditioning we could further enlarge the step-size fr®5 tb 1/20. Taking into
account the factor of 2 between the partially improved and the leapfregrsshwe get a speed-up
of a factor of 10 in favour of the improved pseudo-fermion action combinigd tive symmetric
even-odd preconditioning of the clover-improved Wilson fermion matrix.
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3. Conclusions

We have studied the performance of the HMC algorithm simulating dynamicarelmproved
Wilson fermions. In particular we have tested two different versions oétea-odd precondition-
ing of the clover-improved Wilson fermion matrii J12] in combination with an impubpseudo-
fermion action [l[]5]. We find a clear advantage in favour of the symmetriiore (I.}), as it is
also the case for the standard pseudo-fermion adfjon [3].
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