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We give some new performance results for the Hybrid Monte Carlo (HMC) simulation of dynam-

ical clover-improved Wilson fermions using an improved pseudo-fermion action. The generalisa-

tion of even-odd preconditioning for the standard Wilson fermion matrix to the clover-improved

case is not unique. In the literature the so called symmetricand asymmetric versions are dis-

cussed. Most of the previous simulations of dynamical clover-improved Wilson fermions were

done with the asymmetric version. Only recently, the JLQCD collaboration has pointed out that

the symmetric version leads to a better performance of the HMC algorithm. Here, we show that

also in combination with an improved pseudo-fermion action, the symmetric version of even-odd

preconditioning leads to a better performance. For our lightest quark mass, which corresponds to

mPS/mV ≈ 0.44, we see a gain in performance by a factor of about 1.3.
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1. Introduction

Today, the standard method to simulated lattice QCD with dynamical fermions is the Hybrid
Monte Carlo (HMC) algorithm [1] or related algorithms like the Polynomial HybridMonte Carlo
(PHMC) or the Rational Hybrid Monte Carlo (RHMC) algorithm. Here we discuss improvements
of the HMC simulation of clover-improved [2] Wilson fermions. In the following,for simplicity,
we restrict ourself to the case of two degenerate flavours. In this case,configurations should be gen-
erated with a probability proportional toB[U ] = exp(−SG[U ]) detM[U ]2, whereSG[U ] is the gauge
action (in the following we shall use the Wilson gauge action) andM[U ] is the fermion matrix.
The determinant is too expensive (cost∝ Volume3) to be evaluated in the numerical simulation.
Therefore so called pseudo-fermions are introduced:

detM2 = detMM† ∝
∫

Dφ†
∫

Dφ exp(−|M−1φ |2) . (1.1)

In order to facilitate a (non-physical) dynamics of the gauge-field, yet another auxiliary field is
introduced: conjugate momentaP for the gauge-field. The resulting Hamiltonian is

H (U,φ ,P) = SG(U)+ |M−1φ |2 +
1
2 ∑

x,µ
Tr P2

x,µ . (1.2)

An update-step (often called trajectory) of the HMC algorithm is composed of

• Heatbath of the conjugate momentaP and the Pseudo-fermion fieldφ

• Evolution ofU andP according to the equations of motion for some fixed timet (in the
following t = 1), using a numerical integration method (e.g. the leapfrog scheme)

• Accept the resultingU ′ andP′ with the probability
A = min[1,exp(−H (U ′,φ ,P′)+exp(−H (U,φ ,P)]

Note that for an exact integration of the equations of motion,H (U ′,φ ,P′) = H (U,φ ,P), and
hence the acceptance rate is 1 in this limit. Recent large scale simulations (see e.g. ref. [3]) with
dynamical Wilson fermions were performed at rather large quark masses.It is debated whether,
using chiral perturbation theory, the numerical results can be extrapolated to the physical quark
masses. Therefore it would be highly desirable to reach lighter masses in thenumerical simulation.
However, the costs of the simulation increase rapidly as the quark mass decreases. The main
reasons for this increase are the following: As the quarks become lighter the condition number of
the fermion matrix increases. As a result, more iterations are needed to solve the linear systems of
equations that need to be evaluated frequently in the HMC simulation. The second problem is that
the step size of the integration scheme (e.g. leapfrog) has to be decreasedwith decreasing quark
mass to maintain a constant acceptance rate.

Recently it has been demonstrated that the latter problem can be avoided or at least reduced
by using alternatives [4, 6, 5, 7, 8, 9, 10] to the standard pseudo-fermions 1.1. Let us discuss in
detail the approach of refs. [4, 5]:N matricesWi are constructed such thatM = ∏N

i=1Wi . For each
of these matrices a pseudo-fermion is introduced:

detMM† ∝
∫

D[φ†
1 ]
∫

D[φ1] ...
∫

D[φ†
N]
∫

D[φN] exp(−
N

∑
i=1

|W−1
i φi |

2) (1.3)
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The matricesWi should be chosen such that they have a smaller condition number thanM. Our
choice of the matricesWi is quite simple, we shift the fermion matrix by a constant, which corre-
sponds to a larger fermion mass. ForN = 2, this results inW1 = M + ρ andW2 = (M + ρ)−1M.
The obvious generalization toN > 2 is given by

W1 = M +ρ1 , Wi = (M +ρi−1)
−1(M +ρi) , WN = (M +ρN−1)

−1M . (1.4)

Preconditioning is a standard method in the solution of system of linear equations. The aim
is to reduce the condition number of the matrix and this way to reduce the number of iterations
needed to solve the problem. Even-odd preconditioning for the standard Wilson fermion matrix
[11] relies on the fact that the hopping termH connects only nearest neighbour sites on the lattice.
As result, the fermion determinant can be expressed as detM = detM̂ with M̂ = 1oo−HoeHeo,
whereo indicates odd andeeven sites. Even-odd preconditioning can be easily combined with the
alternative pseudo-fermion action discussed above, by replacingM by M̂ in eq. (1.4).

The generalization to the clover-improved case has been discussed in ref. [12]. Let us write the
clover-improved Wilson matrix in the formM = (1+T)−H, where the clover-term is represented
by the matrixT which is diagonal in space-time. Using an even-odd decomposition of the lattice
we can write the fermion matrix as

M =

(

1ee+Tee Heo

Hoe 1oo+Too

)

(1.5)

One can rewrite the fermion determinant either as (asymmetric even-odd preconditioning)

detM ∝ det(1ee+Tee) detM̂ASYM with M̂ASYM= 1oo+Too−Hoe(1ee+Tee)
−1Heo (1.6)

Or alternatively in a more symmetric form as (symmetric even-odd preconditioning)

detM ∝ det(1oo+Too) det(1ee+Tee) detM̂SYM (1.7)

with M̂SYM= 1oo− (1oo+Too)
−1Hoe(1ee+Tee)

−1Heo (1.8)

In the HMC, for detM̂2
SYMor detM̂2

ASYMpseudo-fermions are used, while det(1oo+Too) and det(1oo+

Too) are exactly evaluated.
Here we should note that preconditioning not only reduces the effort required to solve the

systems linear equations, but also has an effect on the step-size in the HMCsimulation. E.g. in
ref. [13] it had been noticed that for standard Wilson fermions, replacing M by M̂ in the pseudo-
fermion action (1.1) allows to increase the step-size of the integration scheme by a factor of about
1.3 without decreasing the acceptance rate. Given this fact, one should check whether for clover-
improved Wilson fermions the use of̂MSYM or M̂ASYM in the pseudo-fermion action allows for a
larger step size. Recently, the JLQCD Collaboration [3] has pointed out that, in combination with
the standard pseudo-fermion action and the leap-frog integration scheme,the symmetric version
(1.7) of the even-odd preconditioning is more efficient than the asymmetric one (1.6) that was used
in most of the previous studies. In particular, the step-size, for fixed acceptance rate, is larger by
a factor of 1.3 for the symmetric version than for the asymmetric one. In [5] we have only tested
the improved pseudo-fermion action in combination with the asymmetric version (1.6) of the even-
odd preconditioning. Here we study the combination of an improved pseudo-fermion action with
the symmetric version (1.7) of even-odd preconditioning of the clover-improved Wilson fermion
matrix.
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scheme ρ Nmd Pacc, asymm Pacc, symm

L 0.5 25 0.770(3) 0.847(5)
S 0.5 10 0.883(3) 0.934(2)

Table 1: Runs for the83 × 24 lattice atβ = 5.2, csw = 1.76 andκ = 0.137. L indicates the leap-frog
integration scheme, while S indicates the partially improved scheme of Sexton and Weingarten.ρ is the free
parameter of the improved pseudo-fermion action,Nmd the number of time-steps of each trajectory.Pacc is
the acceptance rate.

2. Numerical results

In ref. [5] we found for extended runs on a 83×24 lattice atβ = 5.2, csw = 1.76 andκ =

0.137 that autocorrelation times in units of trajectories do not depend, for fixed trajectory length
t and acceptance ratePacc, on the pseudo-fermion action and the integration scheme that is used.
A similar result holds for the two dimensional Schwinger model [4]. Also the simulation with
1500 trajectories of a 163 × 32 lattice atβ = 5.2, csw = 2.0171 andκ = 0.1358 reported in [8]
supports this observation. The simulations discussed in the following are sufficiently long to give
reliable estimates for acceptance rates. However they are too short to provide sufficiently accurate
estimates of autocorrelation times. Therefore, we have to rely, supported by the results reported
above, on the assumption that the choice of the pseudo-fermion action has very little influence on
autocorrelation times. In the following we have used the leap-frog integrationscheme and, for most
of the simulations, a partially improved scheme suggested by Sexton and Weingarten (see eq. (6.4)
of ref. [16]). Comparing the performance of HMC simulations with these two schemes, one has
to take into account that in one elementary step the variation of the action with respect to the
gauge-field has to be computed once for the leap-frog scheme but twice for the partially improved
scheme. Sexton and Weingarten [16] also proposed to use different step-sizes for different parts of
the action. One should use a small step-size for the numerically cheap parts of the action and larger
ones for the expensive parts. While in refs. [6, 7, 9, 10] different step-sizes are used for different
parts of the pseudo-fermion action, we use a unique step-size for the whole pseudo-fermion action
and a smaller step-size for the gauge action.

2.1 Results for two pseudo-fermion fields

As a first test, we simulated a 83×24 lattice atβ = 5.2, csw = 1.76 andκ = 0.137. Results
for the acceptance rates are given in table 1. The numbers for the asymmetric case (1.6) are taken
from ref. [5]. For the symmetric case (1.7) we did not search again for the optimal value of the
parameterρ, but used the same value as in the simulations with the asymmetric preconditioning.
We see that the acceptance rates are clearly larger for the symmetric preconditioning than for the
asymmetric one.

2.2 Results for 3 pseudo-fermion fields

In ref. [8] it had been demonstrated that at least for small quark massesthe performance of the
HMC can be further improved by using 3 pseudo-fermion fields instead of 2. Again the simulations
were performed atβ = 5.2, however here we usecsw = 2.0171, which is the final result of the
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κ ρ1 ρ2 Nmd Pacc

0.135 0.7 0.1 25 0.76(2)

0.1355 0.5 0.05 30 0.78(2)

Table 2: Runs for the243×48 lattice atβ = 5.2 andcsw = 2.0171.

Precond. ρ1 ρ2 Nmd Pacc

Asymmetric 0.4 0.03 25 0.809(6)

Symmetric 0.4 0.03 20 0.81(2)

Table 3: Runs for the163×32 lattice atβ = 5.2, csw = 2.0171andκ = 0.1358.

ALPHA-collaboration [14] for the clover-coefficient. We performed simulations for κ = 0.135,
0.1355 and 0.1358. At these values ofκ, the ratio of pseudoscalar and vector meson masses is
mPS/mV ≈ 0.71,0.60 [3] and 0.44 [15], respectively. Note that in the case of ref. [3] the simulations
were not exactly performed atcsw = 2.0171 but atcsw = 2.02 instead. In ref. [3] for lattices of the
size 203 × 48, atκ = 0.134,0.135 and 0.1355 usingNmd = 80,100 and 160 an acceptance rate
of Pacc = 0.676(5),0.666(6) and 0.678(7) had been obtained.Nmd is the number of step of the
leapfrog per trajectory. They have used the standard pseudo-fermionaction with the symmetric
even-odd preconditioning (1.7) and the leapfrog integration scheme. These numbers clearly show
that with the standard pseudo-fermion actionNmd has to be increased with decreasing quark mass
to maintain a given acceptance rate. We have performed simulations on the slightly larger 243×
48 lattice. We have used the partially improved integration scheme discussed above. We have
generated about 200 trajectories after equilibrisation. The results are summarised in table 2. It is
not completely trivial to compare with ref. [3]; we use slightly larger lattices and our acceptance
rate is larger. On the other hand there is some overhead in our simulations dueto the additional
pseudo-fermion fields. However, the main factor certainly due to the numberNmd of steps needed
for one trajectory. Taking these numbers we get 100/(2× 25) = 2 and 160/(2× 30) = 2.6666
in favour of the improved pseudo-fermions forκ = 0.135 and 0.1355, respectively. Note, that
we have taken into account the fact that per step, the variation of the pseudo-fermion action with
respect to the gauge-field has to be computed twice as often for the partially improved scheme as
for the leapfrog scheme. Finally we compare with the simulation of a 163×32 lattice atκ = 0.1358
presented by the UKQCD collaboration in ref. [15]. The used the leapfrogscheme, asymmetric
even-odd preconditioning and the standard pseudo-fermion action. They usedNmd = 400. In ref.
[8] we had already reported results for asymmetric even-odd preconditioning. Using the symmetric
even-odd preconditioning we could further enlarge the step-size from 1/25 to 1/20. Taking into
account the factor of 2 between the partially improved and the leapfrog scheme, we get a speed-up
of a factor of 10 in favour of the improved pseudo-fermion action combined with the symmetric
even-odd preconditioning of the clover-improved Wilson fermion matrix.
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3. Conclusions

We have studied the performance of the HMC algorithm simulating dynamical clover-improved
Wilson fermions. In particular we have tested two different versions of theeven-odd precondition-
ing of the clover-improved Wilson fermion matrix [12] in combination with an improved pseudo-
fermion action [4, 5]. We find a clear advantage in favour of the symmetric version (1.7), as it is
also the case for the standard pseudo-fermion action [3].
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