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1. Introduction

Even though Wilson’s original discretization of the Dirapevator gives rise to one of the
clearest and best understood formulations of lattice Q€Bhaws problems in practice: due to
explicit chiral symmetry breaking the Wilson operator depe unphysically small eigenvalues,
which were thought to be responsible for instabilities obsé in dynamical simulations at light
values of the quark masses with the Hybrid Monte Carlo (HM@@thm [1].

However, recently it was discovered that — rather surglgin- stable simulations with the
HMC algorithm are possible with values of the pseudo scakssmes as low as 380 MeV [2, 3],
if a clever combination of fermion determinant precondliitngy and multiple time scale integration
is used. Moreover, the computational costs appear to be afforgaltn withmes~ 300 MeV, if
the available results for the computational costs are pataéed to this value afps.

In this proceeding we report on progress with the HMC vaneatntroduced in ref. [3].

2. Mass preconditioning

For simplicity we consider herdl; = 2 mass degenerate flavors of Wilson fermions with
Wilson-Dirac operatoDyy and the Wilson plaquette gauge acti§n The lattice action (for one
flavor) reads

S=S+ Y P (Dw +mo)Y(x). (2.1)

wheremy is the bare quark mass. For convenience we also introdudeothi@ng parametex =
(2amy + 8)~* and the hermitian Wilson-Dirac operatQr= y5Dyy.

The numerical integration in the molecular dynamics pathefHMC algorithm [1] is usually
performed by means of the leap-frog algorithm, which is reiée and area preserving, properties
that are needed for the HMC algorithm to be exact. We refeeto[8] for details on how the
leap frog algorithm is generalized to multiple time scalesthat reference we also detail how to
generalize the so-called Sexton-Weingarten (SW) impraviagjration scheme [5].

While the HMC variant presented in ref. [2] is based on donti@composition precondition-
ing, our variant relies on the so-called Hasenbusch a@atelaror mass preconditioning [6]. It was
realized in ref. [6] that using the identity

2 2,2 Q?
detQ” = det(Q° + ) det<Q2+“2> (2.2)
with a mass shiftt can speed up the HMC algorithm, if each of the two determiantthe r.h.s. of
eg. (2.2) is treated by a separate pseudo fermionfieddd a corresponding pseudo fermion action
Ser. The acceleration comes about for the following reasonctmalition number oQ? + u? and
Q?/(Q? + u?) is reduced when compared to the condition numbe®%f A reduced condition
number is expected to lead to a reduced molecular dynanmics &md hence allows for larger step
sizes in the integration. At the same time the inversio@of- u? is — due to the mass shift — much
cheaper than the inversion @, altogether leading to a net speed up.

IWe expect that determinant preconditioning with the n-tt trick [4] performs similarly well.
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The original idea was then to choose the mass shifluch that the condition numbers of
Q?+ u? andQ?/(Q?+ u?) become approximately equal. The speed-up was observedirobed
a factor of two [7].

3. HMC with multiple time scale integration and mass preconditioning

Motivated by the successful combination of multiple timaledntegration and determinant
preconditioning via domain decomposition in ref. [2], wepkxed in ref. [3] the idea of com-
bining mass preconditioning with multiple time scale imeggn. With mass preconditioning the
Hamiltonian for the HMC algorithm reads

1 k
H=-SP,+Y Sr. (3.1)
2% X4 l;

The strategy is then to tunein eq. (2.2) such that the more expensive the computatiorceftain
0Spr, is, the less it contributes to the total force. The differpatts of the action can then be
integrated on different time scalés; chosen according to their force magnitule guided by
AriF = const for alli.

In ref. [3] we demonstrated that this idea proves to be udgafpkactice: we compared the
performance of our HMC algorithm variant to the variant df [2] and to a plain HMC as used in
ref. [8]. The simulations were done on®4 32 lattices with3 = 5.6 and pseudo scalar masses of
mps= 665 MeV, 485 MeV and 380 MeV (runs, B andC). Details for the algorithm parameters
as well as results for several quantities such as the plagerpectation value or the vector mass
my can be found in ref. [3]. In addition to these published ressule have one more simulation
point, corresponding tops= 294 MeV [9] (runD). Our simulations at this point are still ongoing
and the history of this run is not yet long enough to be fullpdasive. Nevertheless, we present
here first performance results for this point.

The first important observation from our investigationshattfor all four aforementioned
simulation points the preconditioning masses and timeescedn be tuned such that simulations
are stable. Examples for Monte Carlo histories of the plaguexpectation value akH can be
found in ref. [3].

In order to compare the performance of our HMC variant to iotheants we have chosen two
different measures. The first is tiperformance figurey = 10-3(2n+ 3) 1yt (P) as introduced in
ref. [2]. Tint(P) is the integrated autocorrelation time of the plaquette raisdthe number of inte-
gration steps for the physical opera@f necessary for one trajectory.represents the number of
inversions of the operatd@ in thousands needed in order to obtain one independent ooatiign.

It is clearly algorithm and machine independent, but it doesaccount for the preconditioning
overhead, which is at least for our HMC variant not completelgligible.

The results for thev-values are summarized in table 1 and, while ¥healues for our HMC
variant and the one of ref. [2, 9] are compatible, they araiBgantly smaller than the values
extracted for the plain HMC algorithm used in ref. [8]. Ndbat ourv-value for simulation point
D (in red) is only based on an extrapolationtpf(P) in 1/m§,S and therefore preliminary.

The second performance measure we used is the number ofidigatint operations (flops)
needed to generate 1000 independent configurations of 4tze 40 with a ~ 0.08 fm. For this
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K v [this worK v[2, 9] v[8]
A 0.15750 009(3) 0.69(29) 1.8(8)
B 0.15800 011(3) 0.50(17) 5.1(5)
C 0.15825 023(9) 0.62(23) -
D 0.15835 0.35 0.74(18) -

Table 1: Comparison of values from this work, ref. [2] (with updates from [9]) and.f&].

measure we could compare our HMC variant to the cost formiulafo[10]
m —4
Cc=K (—PS> L5a 7. (3.2)
my

The actual value oK can be found in [10]. The result of the comparison is showngaré 1 as an
update of the “Berlin Wall” figures of [10, 11]. In figure 1(a)eveompare our results represented
by squares to the results of ref. [8] represented by circlEse lines are functions proportional
to (mps/my)~* (dashed) andmps/my)~° (solid) with a coefficient such that they cross the data
points corresponding to the lightest pseudo scalar mass.dietimond represents the preliminary
result of simulation poinD, where the values for,(P) andmy are extrapolated.

In figure 1(b) we compare to the formula of eq. 3.2 [10] (solite) by extrapolating our
data with(mps/my)~# (dashed) and witlimps/m\y)~® (dotted), respectively. The arrow indicates
the physical pion to rho meson mass ratio. Additionally, wd aoints from staggered fermion
simulations as were used for the corresponding plot in feff]. [ Note that all the cost data were
scaled to match a lattice time extendlot= 40.

The most important conclusion from figure 1 is that with our E@Mariant the “Wall” is
substantially shifted towards smaller values of the quadssmand that simulations with Wilson
fermions andmps < 300 MeV become feasible. Although the result for simulatmint D is
preliminary, it nicely confirms the results for larger vaduef mps, even under the pessimistic
assumption that the final value might be a factor of two larger

4. Thermalization property or meta-stability?

Dynamical Wilson fermion simulations show the generic jgry of a first order phase tran-
sition at the chiral point, as was shown in ref. [12]. At thisape transition point the PCAC quark
mass jumps from non-vanishing negative to positive valoewite versa) and the pseudo scalar
mass assumes a non-zero minimal value, which can be ratber [Bhis minimal value is supposed
to vanish ag? towards the continuum limit, but a reliable information atigh value ofa it takes
a value below, say, 300 MeV, is missing. In ref. [13] this wabf a was estimated to be around
0.1—0.07 fm.

Since simulation poinD hasmps~ 300 MeV and the value @lies in the aforementioned in-
terval, it is important to investigate whether at this siatign point a meta-stability is observed. To
this end we performed for simulation poidttwo simulations, one started from an ordered and the
other from a disordered configuration. Both of these two meashed now a Monte Carlo history
of about 1000 trajectories, but it is still not completelgan whether the runs have thermalized.
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(a) Comparison to ref. [8]. (b) Update of the “Berlin Wall” plots of refs. [10, 11].

Figure 1: Computer resources needed to generate 1000 independéigiucations of size 2%x 40 at a
lattice spacing of about 08 fm in units of Tflopsyears as a function afi,s/my. (See text for details.)

Nevertheless, when measuring the PCAC quark mass for bothduring the thermalization
we observe that the run which started from a disordered amatign shows a positive value of
this quantity while the other run has a negative value, atitig a meta-stability as observed in
ref. [12]. Only after around 900 trajectories the resultbath runs approach each other and seem
to converge to a positive value of the quark mass. Henceeihsdhat at these parameter values
no meta-stability occurs and the observed signs are sinhglyrtalization effects. Nevertheless,
this observation emphasizes the importance of checkinméta-stabilitiedeforelarge scale sim-
ulations are started. It might also indicate that simutapoint D is close to a first order phase
transition that possibly occurs at lower valuesypk,

5. Conclusion

In this proceeding we have reported on our progress with avaeant of the HMC algorithm,
which we introduced in ref. [3]. The performance of our vatig comparable to the recently intro-
duced HMC variant with domain decomposition [2] and cleatiperior to a plain HMC algorithm.
We presented an update of the “Berlin Wall” figure of refs.,[10] showing that with our HMC
variant simulations withmps~ 300 MeV become affordable and do not suffer from instabditi

Moreover, we presented results of a check for meta-staiilét our simulation point with the
lowest value ofmps. We observed signs for a meta-stability during thermdbzatwhich disappear
only after around 1000 trajectories.

For the future it would be interesting to understand why e HHMC algorithm variants — the
ones discussed here and in ref. [2] — allow for stable sinmratwith values of the pseudo scalar
mass of about 300 MeV. One speculation is that this is duedarttiared regularization of the
operator spectrum provided by both, mass and domain detigpopreconditioning. Another
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speculation is that the determinant and the forces are nbteweugh estimated with only one
pseudo fermion field, leading to possibly large fluctuationthe forces. These fluctuations can be
reduced by introducing additional pseudo fermion fields.

Clearly the clarification of these possibilities would beymteresting and it might provide
important insight to even further improve the HMC algorithm
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