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Lattice fermions in a fluctuating gauge field can show localization, much like electrons in a dis-

ordered potential. We study the spectrum of localized and extended states of supercritical Wilson

fermions in gauge ensembles generated with plaquette and improved actions. When the Wilson

fermion operator is used to construct the overlap kernel, the mobility edge, that is the boundary

between the localized and extended states, determines the range of the kernel.

XXIII International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
2
0
0
5
)
1
2
9

Localization of lattice fermions: lessons for overlap Benjamin Svetitsky

Localization is a phenomenon long studied in condensed-matter physics [1]. Concerned with
conduction in disordered media, it is based on the study of eigenstates of the Schrödinger equation
in a random potential. Its counterpart in lattice gauge theory is the study of the spectrum and
eigenstates of a Hermitian fermion kernel in the fluctuatinggauge field. Here we deal with Wilson
fermions, with kernelHW = γ5DW , in an assortment of gauge ensembles [2, 3]. We find low-lying
localized states, extending up to an energy called themobility edge; andextended states at higher
energy. We characterize the localized states by theirlocalization length and theirsupport length
(related to theirinverse participation ratio, or IPR).

The Wilson fermion kernel is not so popular these days for itsown sake but rather for its role in
constructing domain-wall fermions [4] and the closely related overlap fermions [5]. The simplest
overlap kernel is given by

Dov = 1− γ5sgn(HW ). (1)

The range ofDov can become long if the spectrum ofHW contains low-lying (or zero) modes [6].
We will argue here that, though the energy threshhold ofHW lie at zero, the range ofDov is deter-
mined by the position of the mobility edge—that is, the low-lying modes are generally harmless.
The mobility edge perforce lies at non-zero energy, as long as one avoids the Aoki phase [7]. In-
deed, the descent of the mobility edge to zero serves as a useful definition of the onset of the Aoki
phase.

1. Localization basics

As stated above, we address the problem of the spectrum ofHW in the random gauge field
Uxµ . Dislocations in any given configurationUxµ can create bound states, even zero modes [8], in
the spectrum ofHW . Of course we do not study single configurations ofUxµ but averages over an
ensemble. The result is localization.

For a general overview, let’s look at Fig. 1. We assume that the free operatorHW has a gap for
the parameters we choose; above that gap lie plane-wave states. Condensed-matter physicists call
the top of the gap the band edge. If we add a single dislocationto the otherwise constant gauge
field, the plane waves will be replaced by scattering states and a bound state might appear in the
gap. A large number of dislocations will create a large number of bound states, and the scattering
states will show effects of multiple scattering. In finite volume, the scattering states as well as the
bound states form a discrete spectrum.

In the infinite volume limit, with a fixed density of dislocations, both the bound states and the
scattering states form a continuum. The energy that separates the two is called the mobility edge.
The infinite volume limit automatically gives us an average over the shapes and positions of the
dislocations in any finite subvolume. Alternatively, we cankeep the volume finite and average over
gauge field configurations ourselves, as is done in lattice gauge theory.

HW can only have zero eigenvalues in the supercritical region,−8 < m0 < 0. As it happens,
this is just the region of interest for the construction of domain-wall and overlap fermions. The
Aoki phase lies in this supercritical region; we stay outside the Aoki phase so that the mobility
edge is above zero. We will present numbers [3] below form0 = −1.5. For the gauge couplings
we choose, the theory lies between the Aoki “fingers.” These couplings are in fact popular among
users of domain-wall and overlap fermions.
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Figure 1: How the spectrum ofHW changes as one adds (top to bottom) one dislocation, many dislocations,
and a random ensemble of dislocations to the gauge field.

2. The spectral density

Since averaging over the gauge field smears the energy eigenvalues, there is never a discrete
spectrum of bound states accompanied by a continuum of extended states. The spectrum in the
disordered system is described by acontinuous density of states,

ρ(λ ) =
1
V

〈

∑
n

δ (λ −λn)
〉

, (2.1)

whereλ is the energy eigenvalue. We show in Fig. 2 the density of states for the gauge ensemble
generated with the Wilson plaquette action. The vertical bars indicate the mobility edge for the two
couplings. Nothing special happens at the mobility edge.

[We find it convenient to calculateρ via the identity

πρ(λ ) =
1
V

lim
m1→0

〈ImTrG(λ + im1)〉, (2.2)

whereG(z) = (HW − z)−1 is the resolvent ofHW . The mobility edge is where the averaged local-
ization lengthlℓ(λ ) (see below) diverges.]

The main point of Fig. 2 is to show that there is indeed a nonzero density of states at zero
energy. Table 1 shows how this density changes with cutoff and with the choice of gauge action.
Improved actions dramatically lowerρ(0), but in no case is it actually zero.

In a theory with dynamical Wilson fermions, these zero modeswill be of no consequence
because they will cause the fermion determinant to vanish. In any other theory, however, the
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Figure 2: Eigenvalue densityρ(λ ), in lattice units, forβ = 5.7 (a−1 = 1 GeV, upper curve) andβ = 6.0
(a−1 = 2 GeV, lower curve). Plaquette action.

Wilson Iwasaki DBW2

a−1 = 1 GeV: ρ(0) = 10−2 ⇒ 6·10−3 ⇒ 10−3

a−1 = 2 GeV: ρ(0) = 10−4 ⇒ 7·10−7 ⇒ < 10−7

Table 1: Eigenvalue density atλ = 0 for three gauge actions, each at two values of the gauge coupling.

spectrum ofHW does not directly determine the fermion determinant. Whether the ensemble is
quenched, or whether it contains the domain-wall or overlapfermion determinant, the ensemble
average will furnishHW with modes near (and at) zero energy. Will this destroy the locality of
Dov? No—because (outside the Aoki phase) these modes are localized.

3. To the overlap kernel

A localized mode can be described by its support lengthls, which contains most of the mode’s
density, and by its localization lengthlℓ, which is the decay length of any long-range tail (see
Fig. 3). Each can be averaged over all eigenmodes with eigenvalueλ , giving lℓ(λ ) andls(λ ). The
average support length can be used to determine in what rangeof λ the localized modes are dilute.
In view of the mode density shown in Fig. 2, it is clear that low-lying modes will be dilute while
the higher modes will be more crowded.

The dilute, the less dilute, and the extended modes all contribute to the overlap kernelHov.
The contribution of the dilute modes, those below some energy λ̄ , is of the form

〈|Dov(x,y)|〉loc ≈
∫ λ̄

−λ̄
dλ ρ(λ )exp

(

−
|x− y|
2lℓ(λ )

)

≈ λ̄ ρ(λ̄)exp

(

−
|x− y|

2lℓ(λ̄ )

)

, (3.1)
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lls l

Figure 3: Characteristic lengths of a localized eigenfunction: the support length łs, which is the size of the
region containing most of the amplitude; and the localization lengthlℓ, which is the decay length of the tail.

where the second line follows from the steep rise inρ(λ ) seen in Fig. 2. Note that these isolated
modes contribute an exponential tail characterized by their localization length; their low energy is
harmless.1 The dense modes are up near the mobility edgeλc; if we lump them with the continuum
of extended modes then we can estimate that the fall-off of their contribution will be governed by
λc, viz.

〈|Dov(x,y)|〉ext≈ C exp(−λc|x− y|) , (3.2)

whereC is O(1).
Let’s put in numbers for the plaquette action atβ = 6.0. We measure the mobility edge to be

at λc ≃ 0.41 and we fix the demarcation point to beλ̄ ≈ 0.2. The result is

〈|Dov(x,y)|〉 ≈ 10−4 exp

(

−
|x− y|

1.4

)

+O(1) ·exp

(

−
|x− y|

2.4

)

. (3.3)

The second term, governed by the mobility edge, wins—both inprefactor and in exponent. We find
this to be true in all the cases (actions and couplings) we have studied, including those in Table
1. The reverse could be true in other cases; then the range ofDov would be determined by the
representative localization length,lℓ(λ̄ ). The fact that the gap is zero would still be harmless.

We can interpretλc as a mass scale, the mass of effective excitations that influence the overlap
kernel. When the cutoff isa−1 = 2 GeV, we find thatλca−1 ≃ 800 MeV for all three actions. It
may be a disappointment to find that the cutoff is felt at an energy that is so low, but this is still well
aboveΛQCD which is the true dynamical scale. One ought to worry, however, at stronger couplings.
Whena−1 = 1 GeV, the value ofλca−1 comes out to be only 250–320 MeV, not a place we would
like to see unphysical particles in the spectrum.

4. Conclusions

The three main lessons of our work:

1The contribution of dilute localized modes to any Green function will decay in space with the localization length
lℓ. This is in fact the most convenient way to measurelℓ(λ ), by calculating almost any Green function [3].
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1. The mobility edge atλc > 0 [or lℓ(λ̄ ), if it is greater thanλ−1
c ] assures a finite range forDov,

even thoughHW has no gap in the disordered gauge field.

2. One should demand thatλca−1 ≫ ΛQCD.

3. λca−1 is fairly insensitive to the gauge action, even asρ(0) varies widely.

For discussions of these issues in the context of current large-scale lattice computations, see the
contributions of T. Draper and of P. Boyle to these proceedings.
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