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Localization is a phenomenon long studied in condensedempliysics [1]. Concerned with
conduction in disordered media, it is based on the studygefrsitates of the Schrédinger equation
in a random potential. Its counterpart in lattice gauge mhéo the study of the spectrum and
eigenstates of a Hermitian fermion kernel in the fluctuatiagge field. Here we deal with Wilson
fermions, with kerneHy = %Dy, in an assortment of gauge ensembles [2, 3]. We find low-lying
localized states, extending up to an energy calledriobility edge; andextended states at higher
energy. We characterize the localized states by toealization length and theirsupport length
(related to theiinverse participation ratio, or IPR).

The Wilson fermion kernel is not so popular these days fants sake but rather for its role in
constructing domain-wall fermions [4] and the closely tethoverlap fermions [5]. The simplest
overlap kernel is given by

Dov = 1— yssgn(Hw). 1)
The range oDgy can become long if the spectrumlgfy contains low-lying (or zero) modes [6].
We will argue here that, though the energy threshholdhgflie at zero, the range @oy is deter-
mined by the position of the mobility edge—that is, the Iginry modes are generally harmless.
The mobility edge perforce lies at non-zero energy, as langrne avoids the Aoki phase [7]. In-
deed, the descent of the mobility edge to zero serves as @ dedihition of the onset of the Aoki
phase.

1. Localization basics

As stated above, we address the problem of the spectruryadh the random gauge field
Uyu. Dislocations in any given configuratidsy,, can create bound states, even zero modes [8], in
the spectrum oHy. Of course we do not study single configurationdJgf but averages over an
ensemble. The result is localization.

For a general overview, let's look at Fig. 1. We assume thafrée operatoH,, has a gap for
the parameters we choose; above that gap lie plane-waes.s@bndensed-matter physicists call
the top of the gap the band edge. If we add a single disloc&tidhe otherwise constant gauge
field, the plane waves will be replaced by scattering statelsaabound state might appear in the
gap. A large number of dislocations will create a large nundbdound states, and the scattering
states will show effects of multiple scattering. In finitdwme, the scattering states as well as the
bound states form a discrete spectrum.

In the infinite volume limit, with a fixed density of dislocatis, both the bound states and the
scattering states form a continuum. The energy that seysatta¢ two is called the mobility edge.
The infinite volume limit automatically gives us an averagerahe shapes and positions of the
dislocations in any finite subvolume. Alternatively, we é&ep the volume finite and average over
gauge field configurations ourselves, as is done in latticggé#heory.

Hw can only have zero eigenvalues in the supercritical regid< mp < 0. As it happens,
this is just the region of interest for the construction ofrdon-wall and overlap fermions. The
Aoki phase lies in this supercritical region; we stay ougsille Aoki phase so that the mobility
edge is above zero. We will present numbers [3] belownfige= —1.5. For the gauge couplings
we choose, the theory lies between the Aoki “fingers.” Thesglings are in fact popular among
users of domain-wall and overlap fermions.
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Figure 1: How the spectrum aflyy changes as one adds (top to bottom) one dislocation, malogai®ons,
and a random ensemble of dislocations to the gauge field.

2. The spectral density

Since averaging over the gauge field smears the energy elgesy there is never a discrete
spectrum of bound states accompanied by a continuum of dedestates. The spectrum in the
disordered system is described bgoatinuous density of states,

p) = (3 50 —an). (2.1)

whereA is the energy eigenvalue. We show in Fig. 2 the density oésthdr the gauge ensemble
generated with the Wilson plaquette action. The verticed badicate the mobility edge for the two
couplings. Nothing special happens at the mobility edge.

[We find it convenient to calculate via the identity

mp(A) = 1 lim (IMTrG(A +imy)), (2.2)
V m—0

whereG(z) = (Hw — 2)~1 is the resolvent oHy. The mobility edge is where the averaged local-

ization lengthl,(A) (see below) diverges.]

The main point of Fig. 2 is to show that there is indeed a nangensity of states at zero
energy. Table 1 shows how this density changes with cutaffweith the choice of gauge action.
Improved actions dramatically lowex(0), but in no case is it actually zero.

In a theory with dynamical Wilson fermions, these zero modéksbe of no consequence
because they will cause the fermion determinant to vanishanly other theory, however, the
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Figure 2: Eigenvalue density(A), in lattice units, for = 5.7 (a~* = 1 GeV, upper curve) anf = 6.0
(a1 =2 GeV, lower curve). Plaquette action.

Wilson Iwasaki DBW?2
al=1GeV: p(0)=102 = 6.10° = 103
al=2Gev: p(0)=10*% = 7.107 = <1077

Table 1: Eigenvalue density at = 0 for three gauge actions, each at two values of the gaugdisgup

spectrum ofHy does not directly determine the fermion determinant. Wérethe ensembile is
guenched, or whether it contains the domain-wall or oveftgmion determinant, the ensemble
average will furnishHy, with modes near (and at) zero energy. Will this destroy thoallty of
Dov? No—because (outside the Aoki phase) these modes arezkxtali

3. Totheoverlap kernel

A localized mode can be described by its support lehgtivhich contains most of the mode’s
density, and by its localization length, which is the decay length of any long-range tail (see
Fig. 3). Each can be averaged over all eigenmodes with eafyjeaw, giving l,(A) andls(A). The
average support length can be used to determine in what cdrigéhe localized modes are dilute.
In view of the mode density shown in Fig. 2, it is clear that {lying modes will be dilute while
the higher modes will be more crowded.

The dilute, the less dilute, and the extended modes all iboer to the overlap kernédloy.
The contribution of the dilute modes, those below some gnkrgs of the form

X —
(IDov(X.¥)Dioc ~ [;d)\ p(/\)exp<—%>

~ Ap(A) exp(— IZT/szD , (3.1)
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Figure 3: Characteristic lengths of a localized eigenfunction: tingp®rt lengthd, which is the size of the
region containing most of the amplitude; and the localaratengthl,, which is the decay length of the tail.

where the second line follows from the steep ris@{i ) seen in Fig. 2. Note that these isolated
modes contribute an exponential tail characterized by tbealization length; their low energy is
harmless. The dense modes are up near the mobility exigé we lump them with the continuum
of extended modes then we can estimate that the fall-off@f tontribution will be governed by
Ac, Viz.

(IDov(x.y))ext~ € exp(—Acx—Y|), (3.2)

where% is O(1).
Let's put in numbers for the plaquette actionBat= 6.0. We measure the mobility edge to be
atAc ~ 0.41 and we fix the demarcation point to bex 0.2. The result is
Xyl Xyl

(|IDov(x.y)|) ~ 1O4exp<—ﬁ> +0(1)- exp<—W> . (3.3)

The second term, governed by the mobility edge, wins—bofitéfactor and in exponent. We find
this to be true in all the cases (actions and couplings) we sawdied, including those in Table
1. The reverse could be true in other cases; then the ranBepfvould be determined by the
representative localization lengtia(A ). The fact that the gap is zero would still be harmless.

We can interpref. as a mass scale, the mass of effective excitations thatmciude overlap
kernel. When the cutoff ia—1 = 2 GeV, we find that\.a—1 ~ 800 MeV for all three actions. It
may be a disappointment to find that the cutoff is felt at anggnthat is so low, but this is still well
above/\qcp Which is the true dynamical scale. One ought to worry, howetestronger couplings.
Whena ! =1 GeV, the value of.a—! comes out to be only 250-320 MeV, not a place we would
like to see unphysical particles in the spectrum.

4. Conclusions

The three main lessons of our work:

1The contribution of dilute localized modes to any Green fiamcwill decay in space with the localization length
lp. This is in fact the most convenient way to meadu(@ ), by calculating almost any Green function [3].
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1. The mobility edge ai; > O [or |4(A_), if it is greater than\;1] assures a finite range f@oy,
even thoughy has no gap in the disordered gauge field.

2. One should demand thaga ! > Nocp:
3. A.alis fairly insensitive to the gauge action, evenpd®) varies widely.

For discussions of these issues in the context of curregedscale lattice computations, see the
contributions of T. Draper and of P. Boyle to these procegslin
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