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1. Introduction

It is a known fact that arbitrarily small eigenvalues of the massless Dirac operatorD can occur
[1, 2, 3, 4, 5, 6], and that local “bumps” of the corresponding wave functions can be reflected in
large fluctuations of the physical observables [6]. In particular, in the quark mass regionm∼ 1/ΣV,
whereV is the volume andΣ is the bare quark condensate, we expect that few eigenvectors could
give a substantial contribution to the observables; in that case the fluctuations can be reduced in
an efficient way by applying an exact low-mode averaging procedure.By adopting the techniques
developed in [7, 8], low-mode averaging has been applied to quenched meson correlation functions
with Neuberger fermions, both in theε- andp-regimes [8, 9].
This technique can be generalized to a wider class of correlators; in particular this work is devoted
to its application to baryon two-point functions. After clarifying the theoretical framework, we
present a numerical study with quenched Neuberger fermions in thep-regime.

2. Low-mode averaging for baryonic two-point functions

In the following we consider a lattice of volumeV = L3T with lattice spacinga and peri-
odic boundary conditions in all directions. We assume that fermions are discretized by using the
Neuberger–Dirac operatorD [10], which satisfies the Ginsparg–Wilson relation [11]; this ensures
that chiral symmetry is preserved at finite lattice spacing [12]. The conventions used in this work
are the same as in [8], to which the reader can refer for undefined notations. We adopt the neutron
interpolating field

NL(x) =
[

ũaT
L (x)Cγ5d̃b

L(x)
]

d̃c
L(x)εabc, (2.1)

whereq̃=
(

1− 1
2aD

)

q andC is the charge conjugation matrix. We consider the two-point function

CN(t) = ∑
~x

〈Tr
(

NL(x)NL(0)γ0
)

〉, (2.2)

where the trace is meant over the nucleon spinor indices. Following ref. [7], for each gauge
configuration we can extract the firstn low modes of the Dirac operator and express the left–left
propagator as the sum of thelight andheavyparts:

SL(x,y) = P−S(x,y)P+ = P−

[

n−1

∑
i=0

ϕi(x)ϕ†
i (y)+Sh(x,y)

]

P+, (2.3)

whereP± = (1± γ5)/2 and

ϕi(x) =
1

√

λi

[Pcψi +P−cDPcψi ] (x). (2.4)

Here,Pc (c = ±) is the projector on the chiral sector with no zero modes, andλi , ψi are respec-
tively the approximate eigenvalues and eigenvectors ofA = PcD†

mDmPc, whereDm is the massive
Neuberger–Dirac operator. The use of the left-handed propagator avoids the complications due to
the contribution of the zero modes to the correlation function. The baryon correlation function in
eq. (2.2) can be split into four contributions:

CN(t) = Chhh
N (t)+Chhl

N (t)+Chll
N (t)+Clll

N (t), (2.5)
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whereh (l ) means that the heavy (light) part of the propagator is involved. The ensemble average of
each contribution is translational invariant, and therefore its Monte Carlo variance can be reduced
by averaging over equivalent space-time points. There are two possiblecontractions that contribute
to the correlation function of eq. (2.2), and in the case of degenerate quark masses, thelll part can
be written as

Clll
N (t) =

1
V ∑

x,y
δt,tx−ty

n−1

∑
i, j=0

Tr

[

P+

(

ϕa
i (x)ϕg †

i (y)
)T

Cγ5P−ϕb
j (x)ϕ

f †
j (y)Cγ5

]

(2.6)

n

∑
k=0

Tr
[

P−ϕc
k(x)ϕ

e†
k (y)γ0

]

εabcε f eg,

where the translational invariance can be fully exploited without any additional computational cost.
For thehll contribution, the direct application of low-mode averaging would require theinversion
of the heavy propagator onO(n2) source vectors. The strategy is then to select in a systematic
manner only a restricted number of contributions on which space-time averaging will be applied.
The first step in this direction is to introduce diquark vectors

Li
a,αβ (x) ≡ εabcϕb

i1,α(x)ϕc
i2,β (x), (2.7)

wherei = i1 + n i2, andα,β are the explicit spinor indices. In the space spanned by theLi we
define the scalar product

(Li ,L j) = ∑
x,a,α,β ,α ′,β ′

L† i
a,αβ (x)(Pc)αα ′(Pc)ββ ′L j

a,α ′β ′(x), (2.8)

and we define an orthonormal basisV i by diagonalizing the metric matrix(Li ,L j). The basic
building block

D(x,y) =
n2−1

∑
k=0

Lk(x)Lk †(y) (2.9)

can be rewritten as

D(x,y) =
n2−1

∑
k=0

|ck|
2Vk(x)Vk †(y), (2.10)

where|c0| > |c1| > ... > |cn2−1| are appropriate coefficients. Thehll contribution can be expressed
as

Chll
N (t) =

1
L3 ∑

x,~y

{

−2
n2−1

∑
k=0

|ck|
2Tr

[

(

P−Sh(x,y)Cγ5P+Vk †(y)
)T

Cγ5P−Vk(x)P−γ0

]

+ (2.11)

n2−1

∑
k=0

|ck|
2Tr

[

(

P−Sh(x,y)P+Tr(Cγ5V
k †(y)P+)

)T
γ0

]

Tr
[

Vk(x)P−Cγ5

]

}

δt,tx−ty,

and low-mode averaging is applied only on the (supposedly) dominant contributions (k= 0, ...,nb−

1), while the remaining terms (k = nb, ...,n2−1) are computed locally. The other contributions,hhl
andhhh, are computed locally as well, under the assumption that their fluctuations are much milder
than in the previous two cases.
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Figure 1: The coefficientck of eq. (2.10) as a function ofk, for a given configuration atam= 0.04.

Figure 2: Monte Carlo history of the correlation functionCn(t) at t = y0 = 9a, for am= 0.04.

3. Numerical results and discussion

We tested our method on quenched Neuberger fermions defined on a lattice with L/a = 12,
T/a = 32, β = 5.8485, corresponding toa≃ 0.12 fm, L ≃ 1.5 fm. We used three different quark
massesam= 0.04,0.055,0.07 and collectedNconf = 109 measurements of the baryon correlation
function. We extractedn= 20 low modes of the Dirac operator, and chosenb = 20 for the low-mode
averaging on thehll contribution. Taking into account the symmetries of the source vectorsVk, this
corresponds to computing 2nb inversions of the propagator. In fig. 1 we show the coefficientsck of
eq. (2.10) fork = 0, ...,nb−1 for a typical configuration atam= 0.04; they drop off considerably
fast, which justifies the restrictionk = 0, ...,nb−1 for the application of low-mode averaging. In
any case we stress that we performed no systematic study to optimize the choiceof the parameter
nb. In fig. 2 we show the Monte Carlo history ofCN(t) at a given time slicet = y0 = 9a, for
the lightest massam= 0.04. The first figure from the left corresponds to the local computation,
and the presence of large fluctuations can be observed. The figure in the centre is obtained by
performing low-mode averaging on thelll part of the correlation function, as in eq. (2.6): the
fluctuations are reduced, but nevertheless we still observe residual spikes. Finally, the third curve
on the right corresponds to the computation where low-mode averaging is applied to bothlll andhll
contributions: in this case the large fluctuations are sensibly suppressed.This confirms a posteriori
that the fluctuations given by thelll andhll contributions are the dominant ones.
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am ame f f (no lma) ame f f (lma onlll ) ame f f (lma onlll +hll )

0.04 0.69(62) 0.76(14) 0.78(7)
0.055 0.89(20) 0.81(11) 0.85(6)
0.07 0.94(11) 0.87(8) 0.90(5)

Table 1: Numerical results of low-mode averaging (lma) for the effective mass in units of lattice spacing at
t/a = 9, for different values of the quark massam.

Figure 3: Effective mass foram= 0.04.

At large time separations, we expect

CN(t) =

[

AN

(

e−mNt −e−mN(T−t)
)

+AN∗

(

e−mN∗ t −e−mN∗ (T−t)
)

]

..., (3.1)

wheremN is the mass of the ground-state positive-parity nucleon, andmN∗ is the mass of the
negative-parity stateN∗ 1. In table 3 we report the numerical results for the effective mass at
t/a = 9, for our three values of the quark mass. For the local correlator, the fluctuations are such
that a jackknife statistical analysis of the errors cannot be trusted, and the uncertainties reported
in the first column foram= 0.04 and 0.055 are just for completeness. For the lightest-quark
mass, low-mode averaging applied onlll andhll with nb = 20 guarantees a reliable determination
of statistical errors. A brute comparison of the errors indicates a reduction by a factor 10, to
be compared with an increase of the computational cost by a factor 8. Goingto heavier quark
masses the low-mode averaging becomes less efficient, as expected; the same effect is foreseen by
increasing the volume at fixed quark mass. In fig. 3 we report the results obtained for the nucleon
effective mass, foram= 0.04. On the first figure on the left, no low-mode averaging has been
applied, and the signal for the nucleon is very poor. In the centre we show the effect of applying
low-mode averaging on thelll part only: fort/a& 7 we already observe a significant improvement
on the signal. Finally, on the right we show the effective mass that we obtain after applying low-

1Notice that, because of our choice of the interpolating field, we cannot distinguish between different parities, hence
we have both contributions ofN andN∗ in both time sectors. Experimentally∆m = mN∗ −mN ∼ 600 MeV, and we expect
that the contribution ofN in eq. (3.1) dominates at sufficiently larget.
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mode averaging onlll andhll contributions; here the statistical errors in the ranget/a∼ 9–12 are
under control and we can attempt to extract the nucleon massmN. It is important to stress that our
uncertainty on the nucleon mass after low-mode averaging is still quite large withrespect to the
errors obtained without low-mode averaging but with different choices of the nucleon interpolating
field (see e.g. [13] for a recent computation). For this reason, as a next step we intend to apply
this method to baryon two-point functions with other interpolating fields. Moreover, the technique
can be easily generalized to baryon three-point functions and could therefore be very useful for the
computation of the electric neutron dipole moment [14, 15].
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