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1. Introduction

It is a known fact that arbitrarily small eigenvalues of the massless Dira@tgD can occur
(@, B.3.[%.[5,[], and that local “bumps” of the corresponding wawefions can be reflected in
large fluctuations of the physical observab[és [6]. In particular, in tizelgmass regiom~ 1/2V,
whereV is the volume and is the bare quark condensate, we expect that few eigenvectors could
give a substantial contribution to the observables; in that case the flucisiatm be reduced in
an efficient way by applying an exact low-mode averaging procedy@dopting the techniques
developed in[[7]8], low-mode averaging has been applied to quenchehroerrelation functions
with Neuberger fermions, both in tkee and p-regimes [B[]9].
This technique can be generalized to a wider class of correlators; inyartibis work is devoted
to its application to baryon two-point functions. After clarifying the theoréticamework, we
present a numerical study with quenched Neuberger fermions ip-tagime.

2. Low-mode averaging for baryonic two-point functions

In the following we consider a lattice of volumé = L3T with lattice spacinga and peri-
odic boundary conditions in all directions. We assume that fermions aretitsd by using the
Neuberger—Dirac operat@r [[[]], which satisfies the Ginsparg—Wilson relatigr [11]; this ensures
that chiral symmetry is preserved at finite lattice spacjnp [12]. The ceiovenused in this work
are the same as if [8], to which the reader can refer for undefined mstate adopt the neutron
interpolating field

NC(¥) = [GET (CysdR ()| dE (%, (2.1)
1

whereqg= ( —5a ) g andC is the charge conjugation matrix. We consider the two-point function

Cn(t) =3 (Tr(NLOINL(0)0)), (2.2)
X

where the trace is meant over the nucleon spinor indices. Following ff.foi7each gauge
configuration we can extract the firsiow modes of the Dirac operator and express the left—left
propagator as the sum of thight andheavyparts:

S (x,y) =P-S(x,y)P; =P [Zjd’l (y) +S'(x, Y)] P, (2.3)

whereP, = (1+y)/2 and
1

VA
Here,P; (c = +) is the projector on the chiral sector with no zero modes, Jang are respec-
tively the approximate eigenvalues and eigenvector fP.D! Di,P;, whereDy, is the massive
Neuberger—Dirac operator. The use of the left-handed propagatinisathe complications due to

the contribution of the zero modes to the correlation function. The barywalation function in
eq. {2:2) can be split into four contributions:

$i(x) = [P + P_cDP.y3] (). (2.4)

Cu(t) = CR™(t) +CR"(t) +CN' (t) +CN (1), (2.5)

132/2



Low mode averaging for bayon correlation functions Silvia Necco

whereh (I) means that the heavy (light) part of the propagator is involved. Therdris@average of
each contribution is translational invariant, and therefore its Monte Carlane can be reduced
by averaging over equivalent space-time points. There are two possifti@ctions that contribute
to the correlation function of eq[ (2.2), and in the case of degeneratk masses, thil part can
be written as

CIII

< \

Z i— [P+(¢. ¢gT(y)>TCV5P*¢?(X)¢jfT(Y)CVs (2.6)

kiTr [Pf ¢|f(X)¢ke’f(y) K)} gabcgfeg

where the translational invariance can be fully exploited without any addit@mmputational cost.

For thehll contribution, the direct application of low-mode averaging would requirénersion

of the heavy propagator d®(n?) source vectors. The strategy is then to select in a systematic
manner only a restricted number of contributions on which space-time avgnadl be applied.

The first step in this direction is to introduce diquark vectors

nap(X) = €92 5 (X) 95 5 (%), (2.7)

wherei = i1 +ni,, anda, 8 are the explicit spinor indices. In the space spanned by 'thvee
define the scalar product

L= Y L 0R)ar (R)pplh g (9. (2.8)

x,a,a,B,a’,8'

and we define an orthonormal basis by diagonalizing the metric matrig.',L!). The basic
building block

n?—1
D(xy) = 5 LxL(y) (2.9)
can be rewritten as
n2—1
D(xy) = Z)|ck\2vk<x>vk*<y>, (2.10)
k=

where|cg| > |c1| > ... > |c2_4| are appropriate coefficients. Th#é contribution can be expressed
as

' ( 132?{ Tg_:|ck|2Tr[(P§‘(x,y)Cng+VkT(y)>TCngVk(x)Pyo]Jr (2.11)

n:ZOl’CkPTr {(P_g“(x, y)P+Tr(CV5VkT(Y)P+))T yo] Tr[VE()P_Cys] }5[7&_%

and low-mode averaging is applied only on the (supposedly) dominantlmaiins =0, ...,n, —
1), while the remaining term& & n, ...,n° — 1) are computed locally. The other contributiohk|
andhhh are computed locally as well, under the assumption that their fluctuations anenniider
than in the previous two cases.
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Figure 1: The coefficienty of eq. (2.1D) as a function & for a given configuration &m= 0.04.
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Figure 2: Monte Carlo history of the correlation functi@(t) att = yp = 9a, foram= 0.04.

3. Numerical results and discussion

We tested our method on quenched Neuberger fermions defined on a lattide/av= 12,
T/a= 32, = 5.8485, corresponding ta~ 0.12 fm,L ~ 1.5 fm. We used three different quark
massesam= 0.04,0.0550.07 and collectedN.,n = 109 measurements of the baryon correlation
function. We extracted = 20 low modes of the Dirac operator, and choge- 20 for the low-mode
averaging on thall contribution. Taking into account the symmetries of the source vegtotsis
corresponds to computingiinversions of the propagator. In fif. 1 we show the coefficieptsf
eq. (2.Ip) fok =0, ...,n, — 1 for a typical configuration @m= 0.04; they drop off considerably
fast, which justifies the restrictiok= 0,...,n, — 1 for the application of low-mode averaging. In
any case we stress that we performed no systematic study to optimize the aftbiegparameter
n,. In fig. [3 we show the Monte Carlo history G (t) at a given time slicé = yo = 9a, for
the lightest masam= 0.04. The first figure from the left corresponds to the local computation,
and the presence of large fluctuations can be observed. The figure @etitre is obtained by
performing low-mode averaging on tik part of the correlation function, as in edq._{2.6): the
fluctuations are reduced, but nevertheless we still observe resjgkats Finally, the third curve
on the right corresponds to the computation where low-mode averaginglisa bothll andhll
contributions: in this case the large fluctuations are sensibly supprédssad.onfirms a posteriori
that the fluctuations given by thi andhll contributions are the dominant ones.
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am | ams (nolma)| amess (Ima onlll) | ames¢ (Ima onlll +hll)
0.04 0.69(62) 0.76(14) 0.78(7)
0.055 0.89(20) 0.81(11) 0.85(6)

0.07 0.94(11) 0.87(8) 0.90(5)

Table 1: Numerical results of low-mode averaging (Ima) for the dffecmass in units of lattice spacing at
t/a=9, for different values of the quark maas1
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Figure 3: Effective mass foam= 0.04.

At large time separations, we expect
Cn(t) = [AN (e*mNt - e*mN(T’t)) + Ay (e*mN*t - emN*(Tt))} . (3.1)

wheremy is the mass of the ground-state positive-parity nucleon, ragdis the mass of the
negative-parity stat&l* 1. In table[ we report the numerical results for the effective mass at
t/a=29, for our three values of the quark mass. For the local correlator,ubtiéitions are such
that a jackknife statistical analysis of the errors cannot be trusted, anghttertainties reported

in the first column foram= 0.04 and 0055 are just for completeness. For the lightest-quark
mass, low-mode averaging appliedltdnandhll with n, = 20 guarantees a reliable determination
of statistical errors. A brute comparison of the errors indicates a redubtica factor 10, to

be compared with an increase of the computational cost by a factor 8. @oimgavier quark
masses the low-mode averaging becomes less efficient, as expectedn¢heffesmt is foreseen by
increasing the volume at fixed quark mass. Infflg. 3 we report the resuéised for the nucleon
effective mass, foam= 0.04. On the first figure on the left, no low-mode averaging has been
applied, and the signal for the nucleon is very poor. In the centre we gi@effect of applying
low-mode averaging on tH# part only: fort/a > 7 we already observe a significant improvement
on the signal. Finally, on the right we show the effective mass that we oldtemagplying low-

INotice that, because of our choice of the interpolating field, we cannotglissinbetween different parities, hence
we have both contributions &f andN* in both time sectors. Experimentally,, = my- —my ~ 600 MeV, and we expect
that the contribution oN in eq. ) dominates at sufficiently large
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mode averaging oll andhll contributions; here the statistical errors in the ratyge~ 9—-12 are
under control and we can attempt to extract the nucleon mgsét is important to stress that our
uncertainty on the nucleon mass after low-mode averaging is still quite largeegipect to the
errors obtained without low-mode averaging but with different choi¢éssonucleon interpolating
field (see e.g.[[13] for a recent computation). For this reason, astastegxwe intend to apply
this method to baryon two-point functions with other interpolating fields. Magedhe technique
can be easily generalized to baryon three-point functions and coukfehebe very useful for the
computation of the electric neutron dipole momén} [14, 15].
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