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1. Introduction.

More than twenty years’ experience of the lattice gauge community has taught us that it is
always a good thing to have a bare action which respects symmetries, because then no fine tun-
ings are required to preserve the symmetries at distances much greater than the cutoff scale. For
this reason, essentially all lattice simulations of gauge theories perform simulations with gauge
invariant lattice actions, and there is never any discussion about trading a small violation of gauge
invariance in the simulation for larger volume or an apparently more efficient simulation algorithm.
People have, however, always been willing to sacrifice chiral symmetry in their choice of lattice
discretization. This seems somehow asymmetric: Why not perform simulations with lattice actions
which preserve exact J (Nf) x SUJ(N¢) chiral symmetry?

The advantages of this approach are obvious: One does not have to separate the physical ex-
plicit chiral symmetry breaking from a nonzero quark mass from the unphysical chiral symmetry
breaking induced by lattice artifacts. The flavor content of the theory being simulated is unam-
biguous. The index theorem is theoretically clean. The topological charge can be measured to be
exactly what the dynamical fermions see during the simulation, not something which is determined
by some post-processing procedure. And because the action preserves symmetries, correlation
functions obey Ward identities which considerably simplify their theoretical analysis. For exam-
ple, one does not have to spend any time measuring (and trying to remove) lattice-artifact additive
mass renormalization or operator mixing.

The way to do this is well known: use a lattice action which encodes the Ginsparg-Wilson[fl]
relation, an overlap[g], B] action. This article is a summary of our experiences with simulations of
two flavors of dynamical overlap fermions, using a version of the algorithm of Fodor, et al[f]. It is
a condensation of our two recent papers, Refs. [E, E], plus a little newer material.

2. Algorithmic I ssues

Simulations with dynamical overlap have (at least) two problems:
e They run so slowly
e Changing topology is hard

Our method of attack for the first problem is to replace the usual link variable gauge con-
nection by a fat link. It has been known since at least 1998 [f7, B Bl [L0] that fat links improve
the chiral properties of non chiral fermion actions (and the flavor symmetry properties of stag-
gered fermions). The bottleneck has always been to find a smearing method which can be used
in a molecular dynamics update, where the evaluation of the force requires a fat link which is dif-
ferentiable with respect to its component thin links. Formulations like the Asqtad link solve this
problem by “following the paths,” but this does not give as much improvement as one would like.
Our solution was provided by Peardon and Morningstar[[LT]] with the “stout link” (invented in a
Dublin public house): a multilevel blocking which is fully differentiable. In our runs, it pushes
the thin link plaquette TrUp ~ 1.7 up to about 2.8 (with two levels of smearing with p = 0.15).
The number of Dirac operator matrix times vector multiplies per trajectory is reduced by about an
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order of magnitude compared to simulations with a thin link gauge connection. The physics reason
for this speedup is that fattening reduces the number of small eigenmodes of the kernel operator,
improving its conditioning number.

With a stout link, the fermions decouple from the UV fluctuations of the gauge field, and the
mean size of the fermion force is reduced to about an order of magnitude smaller than the gauge
force. This makes a multiple time scale integration algorithm very attractive. We run with the
Sexton-Weingarten[fL2] form of this updating, taking the integration time step for the gauge fields
to be 1/12 of that for the fermions.

The square of the Hermitian overlap operator projected on one chiral sector is given by

e

HG(m) = 2(R— -)Ps | 1+ Y ()| Ai) (Ail| Py + 1P (21)

with Ry the radius of the Ginsparg—Wilson circle, P, = %(1+ o'ys) the projector on chirality o and
h(—Ro) the Hermitian kernel operator. The sign function €(h(—Ry)) is here given in its spectral
representation.

Because of the sign function in its definition, the effective action of the overlap operator has a
discontinuity. It occurs when one eigenvalue of the kernel h(—Rp) changes sign during the molec-
ular dynamics evolution. These are the surfaces in the space of the gauge fields on which the
topology as defined by the index theorem changes by one unit. Ref. [f] gives a prescription of how
to account for this discontinuity in the HMC algorithm. One essentially measures the height AS of
the step in the action (the potential of our Hamiltonian equations of motion) and if the momentum
perpendicular to the surface is large enough one reduces it as one would do in classical mechanics.
We will call this a “refraction” in the following. If the perpendicular momentum is too small, we
flip it, and thus reflect the trajectory. With N the vector normal to the surface momenta T are thus
updated by

_{—N(N|7T>+Nsign<N|n> (N[m2—2AS; if (N|m)2> 2AS; 22)

—2N(N|m) if (N|m)2 < 205

The discontinuity AS of the effective action is caused by one eigenvalue changing sign, thus
making the replacement

H2

ag

(M) — HZ & (4R5 — )Py | Ao) (Ao|Ps (2.3)

with |Ag) the zero mode. The corresponding step in the effective action can be evaluated using the
Sherman-Morrison formula [[[3]

(4R5 — ") (@IPs

1
TR ) oot 2Pl P g Aol

(2.9)
Interestingly, for the overlap not only can one compute the step in the effective action, but one can
also give a closed form expression for the change in the fermionic determinant due to the change
in topology:

<<p|Po 5Po|@) | =

1
Ho(m)?

detlflcz,(m)

( - 77— PolAo) . (2.5)
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In the actual simulation one faces the problem that the trajectories reflect most of the time off
the zero eigenvalue surface and one never changes topology. The reason is that the change in the
determinant from the starting configuration to the ’current’ configuration in the MD evolution is
only approximated well as long as the Dirac operator is similar to the starting one. The fluctuations
are small as long as one has not changed topology. However, this is definitely not the case for
the operator in a different topological sector. Since exp(—@*1/H?@) averages to the change in
the determinant from the starting configuration to the end, large fluctuations mean that most of the
time exp(—@*1/H?@) ~ 0 and the effective action is thus large, whereas only a few times do we
get small effective actions. These two observations combine to give large AS most of the time, and
thus a large auto-correlation time in the topological charge.

To reduce fluctuations, we used the method proposed in Refs. [E, @], which consists of
rewriting the fermion determinant as as

Np—1

detH?(m) = detH?(my,,) l_l det Ho(m)

H2(my 1)

with mg = mand my < my1 with suitably chosen larger masses. In this method, only determinant
ratios are evaluated using pseudo-fermions for the light quark masses. The change in the spectra
while changing topological sector of the ratio H (m)/H () is expected to be less dramatic than the
change of the spectrum of H(m). Only the determinant of H(my) is evaluated directly. However,
for a large mass my the spectrum of H? is confined to a smaller region between mg, and 4R(2) and
the change in the spectrum therefore less drastic than for a smaller mass. One or two extra pseudo-
fermion fields (N, = 2,3 in Eq. P.6) help some, but do not solve the problem.

To quantify our difficulty, we compare in Fig. [ the discontinuity of the effective action with
the physical step from the fermion determinant. We subtracted the relevant quantity from the
normal component of the momentum so that positive values correspond to reflections whereas the
topology changes for negative values. We observe that the physical discontinuity would allow for
significantly more changes in topology than the step in the effective action does.

The low correlation between the estimator and the physical step height Eq. (2.5) shows up in
the large auto-correlation time of the topological charge. Even though part of it is physics — lighter
quarks make it harder to get from v = 0 to v = =1 — the height of the step grows with 1/m? instead
of the expected determinant ratio, log m. Since the normal component of the momentum is roughly
independent of the quark mass, it becomes more and more difficult to change topology. Indeed,
Fig. B shows that the mean time between topological changes varies inversely with the square of the
quark mass. The large auto-correlation time for the topology is a phenomenon that is also known
with other fermions, e.g. improved staggered quarks. To the extent that these formulations know
about topology, the step in the fermion action for the overlap might be replaced for them by a steep
region which approximates the step. The result is the same: if the approximation of the determinant
is bad, the step is overestimated most of the time and one does not change topology.

(2.6)

3. The Topological Susceptibility

In our second paper we made rough calculations of the topological susceptibility and chiral
condensate using eigenmodes of the Dirac operator. We made simulations on 84 lattices, at a lattice
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spacing of about a ~ 0.16 fm, with three quark masses, amg = 0.03, 0.05, and 0.1. These lattices
are really too small for physics, but they illustrate the useful features of a calculation with overlap
fermions.

We determined the string tension from the heavy quark potential and the Sommer parameter,
from Wilson loops of temporal extentt = 2 and 3. The two measurements are not consistent, but
we performed tests on 8% and 12* quenched lattices which showed that the t = 3 potentials were
consistent with ones from further separations. So we used their fit values. The lattice spacing varies
by about ten percent as we change the quark mass.

One picture, Fig. B illustrates our measurement of the topological susceptibility x. We take
our measurements of ro/a and the topological charge time history to compute Xré. We have com-
puted the lattice-to-M Smatching factor in perturbation theory and use it to convert the quark masses
to their yu = 2 GeV MS values. Diirr[[L6] has presented a phenomenological interpolating for-
mula for the mass dependence of the topological susceptibility, in terms of the condensate = and
quenched topological susceptibility xq,

1 = Nt + i. (3.1)
X M2 Xq
Taking Z from our RMT analysis in the next section ( ro>% ~ 0.43) produces the curve shown in
the figure.

Most published measurements of the topological susceptibility present them as a function of
the pseudoscalar mass. Since we don’t have spectroscopy, we can’t do that. We can, however, use
the Dirr curve as a fiducial, since most published measurements of the topological susceptibility
present it, too. Our data (as well as that of Ref. [[L7]) lies below the Diirr curve. Most measurements
with nonchiral actions lie above it. (See, for example the figures in Ref. [L§] or [fld]). Since our
guenched results give a value typical of simulations on larger lattices, x ~ (190 MeV)#), we don’t
think we are seeing a finite volume effect.
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Figure 1. The stochastic estimate of the height of the step compared to the actual change in the logarithm
of the determinant from a subset of our ensemble. We subtracted the normal component of the momentum
squared (which is typically less than 10) such that negative values mean refraction and positive ones reflec-
tion. For mass mg = 0.03 on the left we have a number of events in the upper left quadrant that would have
tunneled with the exact change of the determinant and only a few that actually tunneled (in the two lower
quadrants). For mg = 0.05 the picture is similar, even though there are more tunneling events.
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Figure 2: Monte Carlo simulation time between topology changes versus quark mass.
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Figure 3: Topological susceptibility versus quark mass, in units of ro. The curved line is the Durr interpo-
lating formula, Eq. @ The three horizontal lines give the quenched value and its error.

4. The Condensate from Eigenmode Distributions

It was proposed more than a decade ago that the distribution of the low-lying eigenvalues of the
QCD Dirac operator in a finite volume can be predicted by random matrix theory (RMT) [P0} P17,
P3]. Since then this hypothesis has received impressive support from lattice calculations, mainly
guenched simulations [23, P4, 3, B8, B7}, B8], but also some dynamical ones using staggered quarks
(3. Ba1-

Typically, the predictions are made in the so-called epsilon regime, for which 1/A < L <«
1/m; with A a typical hadronic scale. However, it has been found that they describe the data
in a wider range. Two recent large scale studies, e.g., using the overlap operator on quenched
configurations [27, g, needed lattices with a length larger than 1.2 — 1.5 fm for RMT predictions
match the result of the simulation. Our dynamical lattices have a spatial extent of about 1.3 fm. As
we will see, random matrix theory describes our low-lying Dirac spectra quite well.
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Our analysis is based on the distribution of the k-th eigenmode from RMT as presented in
Ref. [B1]] and successfully compared to simulation results in Ref. [BG]. The prediction is for the
distribution of the dimensionless quantity { = pA¢ZV in each topological sector, with Ay the k-
th eigenvalue of the Dirac operator, Z the chiral condensate, and V the volume of the box. The
guantity p is the one-loop finite volume correction, p = 1+c¢/(f,L)? where c is a “shape factor.”
These distribution are universal and depend only on the number of flavors, the topological charge
and the dimensionless quantity mg2V.

By comparing the distribution of the eigenmodes with the RMT prediction one can thus mea-
sure the chiral condensate . The main advantage of this method is that it gives the zero quark
mass, infinite volume condensate directly. The validity of the approach can be verified comparing
the shape of the distribution for the various modes and topological sectors. The main uncertainty
comes from a too small volume which causes deviations in the shape, particularly for the higher
modes.

In Fig. fl we show the distribution of the two lowest eigenmodes of the overlap operator (scaled
by ZV) measured on the v = 0 and v = £1 parts of the amq = 0.03 and amq = 0.05 ensembles.
We fit the RMT prediction from Ref. [B1] to these distributions. The prediction agrees overall well
with the measured distribution given the low statistics. However, the distribution of the lowest
mode in the v = 0 sector seems to have a tail at larger AZV that does not match the prediction.
This could be an effect of the small volume. We also show the prediction for the distribution of the
third mode from our fitted values of 2V in the third column of Fig. f} The RMT curve and the data,
again, agree quite well. However for the |v| = 1 sector, the curve seems to be on the right of the
data. This is probably a sign of the breakdown of RMT for eigenvalues larger than the Thouless

energy [B2, P51

am, p5re A combined fitto v = 0,1, n= 1,2 at each mq (four distributions fit si-

005 | 0 40(3) multaneously) gives the results shown in Table . In our small volumes, and

0'03 0'44(2) using the physical value for f; (93 MeV), p ~ 1.4, which is uncomfortably
. . . = g . - 3

0.01 | 0.38(2) large. Dividing it out boldly gives = ~ (280 MeV)?.

After Ref. [] appeared, we performed some simulations at lower quark
Table1: Condensate  mass, amg = 0.01. We restricted the topological sector to v = 0 by forbid-
Versus quark mass.  4ing refractions. It is unknown whether a particular topological sector is
simply connected or not (in the latter case, forbidding topology changes
might make the simulation non-ergodic). We ran two separate molecular dynamics streams to look
for any obvious discrepancies. We did not see any: In the two streams, the plaquette and string
tension parameters were consistent within statistical uncertainties; nothing looks unusual. We also
did some running at am = 0.005 (or a 5 MeV quark mass), though not with enough statistics to fit
the condensate. In both cases the code ran stably and quietly.
Fig. B shows the distributions and fit to the condensate from this data set.

5. Conclusions

Simulations with dynamical overlap fermions are poised to begin producing physics results.
We are presently simulating on larger volumes in order to make a more reliable calculation of the
condensate. We also continue to groom our algorithms. We believe that there are many more tricks
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Figure 4: Distribution of the lowest two eigenmodes of the Dirac operator for our ensemble for v =0, £1.
The lines are fits of the random matrix theory prediction to the data for the two lowest modes. The lines for
the third mode are predictions.

to be found and encourage others to work on dynamical simulations with overlap fermions. The
physics payoffs are potentially very high.
This work was supported by the US Department of Energy.
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