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We present results from QCDOC for the dependence of the residual mass on the size of the fifth

dimension, and its relation to the density and localisation properties of low eigenvectors of the

Hermitian Wilson Dirac operator and the domain wall transfer matrix, for 2+1 flavour domain

wall QCD using DBW2 and Iwasaki gauge actions. Using ensembles of 163×32 configurations,

with an extent of 8 in the fifth dimension for the sea quarks, we demonstrate the existence of

a regime where locality, chiral symmetry breaking and topology change can be acceptable for

inverse lattice spacingsa−1 ≥ 1.6 GeV.
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1. Introduction

All current formulations of lattice chiral symmetry in one way or another use a negative mass
Wilson-like Hermitian Dirac operator,HW = γ5DW, of the Kaplan approach [1]. Various procedures
are used to modify the spectrum to display either exact (to machine and convergence precision),
or in the case of DWF exponentially accurate, chiral symmetry. The structure of the Aoki phase
of this negative mass Wilson operator has direct implications for the appropriate regions of param-
eter space in which to simulate light dynamical fermions. A modification [2] of the argument of
Hernandez et al [3] shows that a gap in the spectrum ofextendedstates ofHW guarantees locality
of the resulting chiral operator. Numerical evidence suggests that, at affordable couplings, there
is a gap in the spectrum of extended states, but the spectrum is filled with a non-zero density of
localised states. It is prudent only to accept a density of low modes in the simulation ensemble
when accompanied by a demonstration of this eigenmode structure. Further, in domain wall and
related approaches, the residual chiral symmetry breaking effects depends in detail on the densities
and sizes of modes of the transfer matrix. In fact a model of this dependence will be used as one of
several diagnostics to investigate the nature of the spectrum in our simulations.

This strong coupling behaviour of Wilson fermions does not leave one at liberty to simulate
QCD at arbitrarily coarse lattice spacings. Simple categorisation of errors in a weak coupling
expansion ina andαs will break down near the phase boundary, which bounds the coarsest lattice
spacing at which the formulation makes sense. This implies a minimum cost that must be paid
for a given class of action to have the formulation under control. The phase boundary is action
dependent, and, while the negative mass Wilson kernel does not normally weight the ensemble
its zero modes are the same as those of the transfer matrix. So for the first time we perform
a numerical study of the localisation of its low modes in the real-world case of 2+1 flavours of
dynamical(almost) chiral fermions and demonstrate that 2+1 flavour dynamical DWF simulations
are rendered affordable to the RBC and UKQCD collaborations by our new QCDOC systems.

2. Aoki phase diagram of lattice QCD

The history of the Aoki phase is both rich and interesting. The phase was first conjectured
and described by Aoki [4] in both the quenched and dynamical cases. The order parameter for
the phase is a pionic condensate. This condensate spontaneously breaks flavour-parity in the two
flavour dynamical case, with a flavour non-singlet Goldstone pion for dynamical Wilson fermions
throughout the Aoki phase. In the single-flavour quenched case, (discrete) parity is spontaneously
broken, and the massless mode that arises is a pseudo-pion on the critical line of the Aoki phase
transition, but may be massive in portions of the phase. Since the Hermitian Wilson Dirac op-
erator has a Banks-Casher relation a non-zero density of near-zero modes is associated with the
condensate in both the quenched and dynamical cases.

It was observed [5, 6] that the quenched Aoki phase consists of two qualitatively different
regions bounded by a criticalβc(M5). Below βc(M5) near-zero modes are delocalised and, above
βc(M5), the phase contains localised near-zero modes. In both regions the pionic condensate and
density of near-zero modes are non-zero, but their localisation properties differ fundamentally.

Golterman et al [2] introduced to QCD the concept of a non-zero mobility edgeλc, as a critical
eigenvalue ofHW Dirac operator above which all eigenstates are extended and below which states
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are localised. They also applied the Mckane and Stone localisation escape from Goldstone’s theo-
rem to lattice QCD at non-zero lattice spacing in the two-flavour quenched case. Specifically, they
showed that two quenched flavours with a non-zero mobility edge can display a spontaneous break-
ing of a continuous local symmetrywithout a corresponding Goldstone boson. This observation
is key to the correct functioning of all the various formulations of Kaplan fermions wherever the
kernelHW has a non-zero density of low modes. This qualitative picture is displayed in Figure1.

Figure 1: Schematic diagram of the quenched Aoki
phase. A pionic condensate and corresponding non-
zero density of near zero modes is developed through-
out most of the negative mass region. In the coloured
sectors, a non-zero mobility edge is developed and the
contours could equally well represent either decreas-
ing low mode density, decreasing pionic condensate
or increasingλc as one moves towards the continuum
limit at g2 = 0.

3. Implications for residual chiral symmetry breaking in DWF

For domain wall and related approaches the form of the spectrum of the transfer matrix has
implications the approximation to chiral symmetry, which we analyse via the axial Ward identity
defect,

mres=
∑y〈J5(y, t)P(0)〉
∑y〈P(y, t)P(0)〉

(3.1)

whereJ5 is the usual point-split midpoint pseudoscalar density, andP is the pseudoscalar density
on the walls.

The log of the transfer matrix in the 5th dimension isHT , and this operator will have a mobility
edgeλT . In correlation functions, a volume factor suppresses localised states, giving two forms
[2, 7] of leading contribution tomres, each with an infrared shell cutoff ofO( 1

Ls
):

mres(Ls) =
(

c1e−λTLs +c2

) 1
Ls

(3.2)

these contributions are respectively: (i) exponentially suppressed inLs; volume enhanced states
at mobility edgeλT ≤ λ ≤ λT + 1

Ls
, and (ii) poorly suppressed inLs; low lying localised states

with λ ≤ 1
Ls

. Herec2 is proportional to the density of near-zero modes,ρ(0), and we require
a demonstrably non-zero mobility edgeλT for safe QCD simulations with chiral formulations.
It is acceptable to have a significant non-exponential component inmres. Formally one should
extrapolate toLs = ∞ to remove residual chiral symmetry breaking effects, but practically it is
only necessary thatmres be numerically small compared to the smallest explicit quark mass in the
simulation, and chiral symmetry breaking effects absorbed with an additive mass renormalisation.
Taking 1

10 our lightest mass at current lattice spacings suggestsmres= O(10−3) as adequate.

We show fits to the functional form3.2for three degenerate flavour ensembles at several gauge
couplings for the Iwasaki and DBW2 gauge actions in figure2, and the fitted parameters in table1.
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Figure 2: Valencemres(Ls) dependence of partially quenched DWF with the DBW2 and Iwasaki gauge
actions as a functionLs usingLs = 8 and the indicatedβ values on a 163×32 volume for the ensembles.
The sea and valence quark masses are 0.04 throughout.

Table 1: Fit parameters to the dependence ofmres on Ls shown in figure 2. We also give the lattice spacing
obtained from a the static potential [9] dynamical backgroundmud = ms = 0.04 without chiral extrapolation.
This differs from lattice spacing defined in the chiral limit presented elsewhere in this conference, and we
only provide the lattice spacings here for illustration.

Iwasaki
β c1 λc c2 ' ρ(0) a−1

2.13 0.35 0.195(1) 0.0160(1) 1.61(2)
2.2 0.30 0.221(1) 0.0041(3) 1.89(3)
2.3 0.24 0.254(1) 0.0007(1) -

DBW2
β c1 λc c2 ' ρ(0) a−1

0.72 0.35 0.204(1) 0.0225(3) 1.40(4)
0.764 0.31 0.25(1) 0.0029(1) 1.74(2)
0.78 0.28 0.26(1) 0.0017(2) 1.81(4)
0.80 0.27 0.291(3) 0.00069(5) 1.98(4)
0.88 0.16 0.33(1) ≤ 2e−6 -

4. Microscopic study of the mobility edge

We will now compare the above ensemble averaged determination of the mobility edge to
a microscopic view based on the size distribution of individual eigenvectors. We determined up
to 256 eigenvectors ofHW using the CHROMA code base , on 25 configurations per ensemble.
For each eigenvector,ψ(x), we define a localisation length in a robust way as follows. Defining (i)
mode densityρ(x) = ψ†ψ(x) and centerx0 such thatρ(x0)≥ ρ(x)∀x 6= x0; (ii) radiusr(x) = |x−x0|
using nearest periodic mirror image; (iii) effective localisation exponentLeff(x) = 2r(x)

logρ(x0)−logρ(x) ;
and (iv) robust localisation lengthLmax = max

r(x)≥5
Leff(x).

As the eigenvalue approaches the mobility edge from below, we observed two clear processes
by which delocalisation takes place. Firstly, the mean rate of fall off from the center decreases cre-
ating much bigger states. Secondly, states become increasingly multi-centered, with exponential
fall off between a number of satellite peaks. The above definition of localisation length is designed
to reflect both the process of single peak broadening, and the development of multiple peaks. In-
verse participation ratios, for example, would be a less robust measure of locality in that it would
not differentiate two well separatedδ functions from those on two neighbouring sites. We display
scatter plots of this definition of localisation length in Figure3 for the Iwasaki and DBW2 gauge
actions atβ = 2.13 andβ = 0.764 respectively.

We computed the lowest 10 modes of the 5d Hermitian domain wall operatorHDWF = γ5R5DDWF
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Figure 3: Microscopic view of the mobility edge based on a scatter plot of maximal localisation lengths of
individual low eigenmodes ofHW. We overlay the mobility edge determinations for theHT mobility edge
from fits to the model formres and find good agreement for both the Iwasaki and DBW2 gauge actions.

Figure 4: We display an iso-surface through the eigenvector density of a chiral mode bound to the wall.
Heres is the vertical direction,t the left-right axis, andz runs into the page. Two different values ofx and
y are shown(3,3) and(11,13) showing both a localised incursion of the eigenmode associated with a low
mode ofHW, and a uniformly well stuck region.

using the Columbia Physics System on a single configuration from a 163× 32× 8 DBW2 2+1
flavour ensemble atβ = 0.764. The role of localised low modes ofHW providing conduits into the
bulk for chiral symmetry breaking and causing corresponding localised spikes in the correlation
function formres is corroborated by the iso-surfaces of constant eigenvector density obtained in our
simulation in figure4. A movie, raster scanningx andy as a unified “movie-time”, can be obtained
from http://www.ph.ed.ac.uk/~paboyle/QCD/5dmode.mpgOn the same configuration, we used
the lowest 256 eigenmodes of the 4d Hermitian Wilson operator computed using the CHROMA
system to expres the 5d modes as a sum over 4d modes usingΨi(x,s) = Ns∑ j αi j ψ j(x), where
N2

s = ∑x Ψ†
i (x,s)Ψi(x,s) normalises each s-slice. If the basis were complete∑ j α2

i j = 1, however
this can only be true in the bulk for largeLs, so we computed 5d modes for a valenceLs = 16, and
not the unitaryLs = 8 point, finding that for that while the basis is incomplete on the wall the de-
scription of the propagation in the bulk is as much as 80% complete despite the mismatch between
HT andHW. A few low 4d modes almost completely describe the coupling between walls for each
5d mode. The coefficientsαi j for a typical chiral mode are displayed in figure5 and it can be seen
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Figure 5: Normalised overlap of differents-slices of
a chiral 5d eigenmode ofHDWF with the first 256 4d
eigenmodes ofHW. We take the valence operator with
Ls = 16, and demonstrate numerically that only a few
low-lying 4d eigenmodes dominate the largeLs con-
tributions to chirality mixing operators such asmres.  0
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that 3 low-lying modes dominate thes-dependence of this 5d eigenmode.

5. Conclusions

We find that for 3 flavour dynamical DWF simulations, at fixed lattice spacing, the DBW2
gauge action provides only marginal reduction in the residual mass compared with the Iwasaki
gauge action. Residual chiral symmetry breaking ofO(10−3) is achievable with both gauge actions
in the regiona−1 ≥ 1.6GeV for Ls ≥ 16. We demonstrate the connection between localised low
eigenmodes of the transfer matrix, and a power-law contribution tomres. The presence of low
modes creates an indefinite topological index of the chiral Dirac operator, such that both our results
for ρ(0) and topological time histories [8] suggest that topology change survives at finer lattice
spacings with the Iwasaki action outweighing the gain in residual mass from DBW2.
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