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1. Introduction

All current formulations of lattice chiral symmetry in one way or another use a negative mas:
Wilson-like Hermitian Dirac operatoky = %Dy, of the Kaplan approach]. Various procedures
are used to modify the spectrum to display either exact (to machine and convergence precisio
or in the case of DWF exponentially accurate, chiral symmetry. The structure of the Aoki phas
of this negative mass Wilson operator has direct implications for the appropriate regions of parar
eter space in which to simulate light dynamical fermions. A modificatirof the argument of
Hernandez et al3] shows that a gap in the spectrumesitendedstates oHy guarantees locality
of the resulting chiral operator. Numerical evidence suggests that, at affordable couplings, the
is a gap in the spectrum of extended states, but the spectrum is filled with a non-zero density
localised states. It is prudent only to accept a density of low modes in the simulation ensemb
when accompanied by a demonstration of this eigenmode structure. Further, in domain wall a
related approaches, the residual chiral symmetry breaking effects depends in detail on the densi
and sizes of modes of the transfer matrix. In fact a model of this dependence will be used as one
several diagnostics to investigate the nature of the spectrum in our simulations.

This strong coupling behaviour of Wilson fermions does not leave one at liberty to simulate
QCD at arbitrarily coarse lattice spacings. Simple categorisation of errors in a weak couplin
expansion ira andos will break down near the phase boundary, which bounds the coarsest lattict
spacing at which the formulation makes sense. This implies a minimum cost that must be pa
for a given class of action to have the formulation under control. The phase boundary is actic
dependent, and, while the negative mass Wilson kernel does not normally weight the enseml
its zero modes are the same as those of the transfer matrix. So for the first time we perfor
a numerical study of the localisation of its low modes in the real-world case of 2+1 flavours o
dynamical(almost) chiral fermions and demonstrate that 2+1 flavour dynamical DWF simulations
are rendered affordable to the RBC and UKQCD collaborations by our new QCDOC systems.

2. Aoki phase diagram of lattice QCD

The history of the Aoki phase is both rich and interesting. The phase was first conjecture
and described by Aoki4] in both the quenched and dynamical cases. The order parameter fo
the phase is a pionic condensate. This condensate spontaneously breaks flavour-parity in the
flavour dynamical case, with a flavour non-singlet Goldstone pion for dynamical Wilson fermions
throughout the Aoki phase. In the single-flavour quenched case, (discrete) parity is spontaneou
broken, and the massless mode that arises is a pseudo-pion on the critical line of the Aoki phe
transition, but may be massive in portions of the phase. Since the Hermitian Wilson Dirac of
erator has a Banks-Casher relation a non-zero density of near-zero modes is associated with
condensate in both the quenched and dynamical cases.

It was observed, 6] that the quenched Aoki phase consists of two qualitatively different
regions bounded by a critic8(Ms). Below c(Ms) near-zero modes are delocalised and, above
B:(Ms), the phase contains localised near-zero modes. In both regions the pionic condensate ¢
density of near-zero modes are non-zero, but their localisation properties differ fundamentally.

Golterman et alg] introduced to QCD the concept of a non-zero mobility edgeas a critical
eigenvalue oHy Dirac operator above which all eigenstates are extended and below which state
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are localised. They also applied the Mckane and Stone localisation escape from Goldstone’s th
rem to lattice QCD at non-zero lattice spacing in the two-flavour quenched case. Specifically, the
showed that two quenched flavours with a non-zero mobility edge can display a spontaneous bre.
ing of a continuous local symmetwyithouta corresponding Goldstone boson. This observation
is key to the correct functioning of all the various formulations of Kaplan fermions wherever the
kernelHy has a non-zero density of low modes. This qualitative picture is displayed in Figure

2

A2

Figure 1. Schematic diagram of the quenched A
phase. A pionic condensate and corresponding
zero density of near zero modes is developed thro
out most of the negative mass region. In the colol
sectors, a non-zero mobility edge is developed ani
contours could equally well represent either decr
ing low mode density, decreasing pionic conden
or increasingl; as one moves towards the continu
limit at g> = 0.

3. Implications for residual chiral symmetry breaking in DWF

For domain wall and related approaches the form of the spectrum of the transfer matrix he
implications the approximation to chiral symmetry, which we analyse via the axial Ward identity
defect,

_ 55 DP(0)

Yy (P(y,1)P(0))
whereJs is the usual point-split midpoint pseudoscalar density, Riglthe pseudoscalar density
on the walls.

The log of the transfer matrix in the 5th dimensiotis, and this operator will have a mobility
edgeAr. In correlation functions, a volume factor suppresses localised states, giving two form
[2, 7] of leading contribution tanes, each with an infrared shell cutoff @i(l_is):

Myes (3.1

MedLe) = (1M1 0r) & (32)
S
these contributions are respectively: (i) exponentially suppresskg wolume enhanced states
at mobility edgeAr < A < Ay + Lis and (ii) poorly suppressed io; low lying localised states
with A < Lis Herec;, is proportional to the density of near-zero mode§)), and we require
a demonstrably non-zero mobility edde for safe QCD simulations with chiral formulations.
It is acceptable to have a significant non-exponential componemtsfn Formally one should
extrapolate td_s = « to remove residual chiral symmetry breaking effects, but practically it is
only necessary thames be numerically small compared to the smallest explicit quark mass in the
simulation, and chiral symmetry breaking effects absorbed with an additive mass renormalisatio
Taking % our lightest mass at current lattice spacings suggasts= O(10~%) as adequate.

We show fits to the functional for®.2for three degenerate flavour ensembles at several gauge
couplings for the lwasaki and DBW?2 gauge actions in figdjrend the fitted parameters in tatile
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Figure 2: ValencemegLs) dependence of partially quenched DWF with the DBW2 and Iwasaki gauge
actions as a functiobhg usingLs = 8 and the indicate@ values on a 1%x 32 volume for the ensembles.
The sea and valence quark masses are 0.04 throughout.

+ DBW20.72
+ DBW20.764
+ DBW20.78
¢+ DBW20.80
DBW2 (.88

001

0.0001 —

Table 1: Fit parameters to the dependencerafs on Ls shown in figure 2. We also give the lattice spacing
obtained from a the static potenti&l dynamical backgrounth,y = ms = 0.04 without chiral extrapolation.
This differs from lattice spacing defined in the chiral limit presented elsewhere in this conference, and w
only provide the lattice spacings here for illustration.

DBW?2
Iwasaki B c1 Ac c2~p(0) atl
B | A |c~p)| al 0.72 | 0.35| 0.204(1)| 0.0225(3) | 1.40(4)

2.13 | 0.35| 0.195(1)| 0.0160(1)| 1.61(2) 0.764 | 0.31| 0.25(1) | 0.0029(1) | 1.74(2)

2.2 | 0.30]0.221(1)| 0.0041(3)| 1.89(3) 0.78 | 0.28| 0.26(1) | 0.0017(2) | 1.81(4)

2.3 | 0.24|0.254(1)| 0.0007(1)| - 0.80 | 0.27 | 0.291(3)| 0.00069(5)| 1.98(4)
0.88 | 0.16| 0.33(1) | <2e® -

4. Microscopic study of the mobility edge

We will now compare the above ensemble averaged determination of the mobility edge t
a microscopic view based on the size distribution of individual eigenvectors. We determined u
to 256 eigenvectors dfiy using the CHROMA code base , on 25 configurations per ensemble.
For each eigenvectoy(x), we define a localisation length in a robust way as follows. Defining (i)
mode density (x) = yTy/(x) and centery such thap (o) > p (X)X # Xo; (i) radiusr (x) = [x—Xo|
using nearest periodic mirror image; (iii) effective localisation expohgptx) = m;
and (iv) robust localisation lengthnax = rr(g)a;é Leff(X).

As the eigenvalue approaches the m6bi|ity edge from below, we observed two clear process
by which delocalisation takes place. Firstly, the mean rate of fall off from the center decreases cr
ating much bigger states. Secondly, states become increasingly multi-centered, with exponeni
fall off between a number of satellite peaks. The above definition of localisation length is designe
to reflect both the process of single peak broadening, and the development of multiple peaks. |
verse participation ratios, for example, would be a less robust measure of locality in that it woul
not differentiate two well separatédfunctions from those on two neighbouring sites. We display
scatter plots of this definition of localisation length in Fig@réor the lwasaki and DBW2 gauge
actions a3 = 2.13 andf3 = 0.764 respectively.

We computed the lowest 10 modes of the 5d Hermitian domain wall opétgiar = 15RsDpwr
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Figure 3: Microscopic view of the mobility edge based on a scatter plot of maximal localisation lengths of
individual low eigenmodes dfly,. We overlay the mobility edge determinations for the mobility edge
from fits to the model fomesand find good agreement for both the lwasaki and DBW2 gauge actions.

L L L L L
0 0.05 0.1 0.15 0.2 025
Lambda

Figure 4: We display an iso-surface through the eigenvector density of a chiral mode bound to the wal
Heres s the vertical directiont the left-right axis, ana runs into the page. Two different values»oénd

y are shown(3,3) and (11, 13) showing both a localised incursion of the eigenmode associated with a low
mode ofHyw, and a uniformly well stuck region.

using the Columbia Physics System on a single configuration fron? & B& x 8 DBW2 2+1
flavour ensemble g8 = 0.764. The role of localised low modes iy providing conduits into the
bulk for chiral symmetry breaking and causing corresponding localised spikes in the correlatio
function form.esis corroborated by the iso-surfaces of constant eigenvector density obtained in ot
simulation in figure4. A movie, raster scanningandy as a unified “movie-time”, can be obtained
from http://www.ph.ed.ac.uk/~paboyle/QCD/5dmode.m@n the same configuration, we used
the lowest 256 eigenmodes of the 4d Hermitian Wilson operator computed using the CHROM,
system to expres the 5d modes as a sum over 4d modes Wgirng) = Ns Y j oij yj(x), where

N2 =5, lPiT(x, s)Wi(x,s) normalises each s-slice. If the basis were compthte:izj =1, however

this can only be true in the bulk for lardg, so we computed 5d modes for a valehge= 16, and

not the unitaryLs = 8 point, finding that for that while the basis is incomplete on the wall the de-
scription of the propagation in the bulk is as much as 80% complete despite the mismatch betwe
Ht andHy. A few low 4d modes almost completely describe the coupling between walls for eact
5d mode. The coefficients;; for a typical chiral mode are displayed in figus@nd it can be seen
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Figure 5: Normalised overlap of differergslices of
a chiral 5d eigenmode dfipwF with the first 256 4d o
eigenmodes dflyy. We take the valence operator with o '
Ls = 16, and demonstrate numerically that only a few  ° 2
low-lying 4d eigenmodes dominate the larigecon-

tributions to chirality mixing operators such g

0w s

4d mode number

that 3 low-lying modes dominate tlsedependence of this 5d eigenmode.
5. Conclusions

We find that for 3 flavour dynamical DWF simulations, at fixed lattice spacing, the DBW2
gauge action provides only marginal reduction in the residual mass compared with the Iwasa
gauge action. Residual chiral symmetry breakin@@f0—3) is achievable with both gauge actions
in the regiona‘1 > 1.6GeV forLs > 16. We demonstrate the connection between localised low
eigenmodes of the transfer matrix, and a power-law contributiomf@ The presence of low
modes creates an indefinite topological index of the chiral Dirac operator, such that both our resu
for p(0) and topological time histories3] suggest that topology change survives at finer lattice
spacings with the lwasaki action outweighing the gain in residual mass from DBW2.
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