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1. Introduction

The realization of chiral symmetry on the lattice represents a major breakthrough in the field
of nonperturbative studies of QCD – in particular it allows the numerical simulation of QCD on the
lattice with realistically light fermion flavors. The key to this success is the overlap Dirac operator
which is related to the domain wall formalism in five dimensions [1, 2, 3, 4].

This paper provides a comprehensive discussion of various 5D versions of the overlap Dirac
operator where the matrix sign function is approximated by a rational function. We show explicitly
how the different variants emerge from the different representations of the rational function and
how they all reduce to the same 4D effective lattice Dirac operator which is the usual overlap
operator or its Hermitian version. In particular we show that the standard domain wall formulation
is simply just one specific member of a large class of 5D operators.

An important goal of the numerical work is to evaluate the “cost” of various chiral fermion
actions. We only consider 5D operators - the ultimate aim is their use in the force term in Hybrid
Monte Carlo simulations.

We will consider 5D formulations to the 4D Overlap Operator or its Hermitian form:

D4(m) =
1
2 [(1+m)+(1−m)γ5sgn(H)] (1.1)

DH
4 (m) =

2
1−m

γ5D4(m) = Rγ5 + sgn(H), R =
1+m
1−m

(1.2)

where sgn(H) is approximated by a rational function ε(H). There is a four dimensional space of
algorithms we can exploit:

• choice of kernel H,

• representation (form) of ε(H). We consider partial fraction, continued fraction and Euclidean
Cayley Transform representations,

• approximation of sgn(H) ≈ εn,m(H) = Pn(H)
Qm(H) for some polynomials Pn and Qm. This is usu-

ally the set of coefficients that fix the particular approximation in the chosen representation,
and

• constraints - how are fermions introduced into the path integral.

Let us consider the various representations of a rational function. The Partial Fraction form [5,
6, 7] uses

ε2n−1,2n(x) = x

(

p0 +
n

∑
i=1

pi

x2 +qi

)

(1.3)

The Continued Fraction form [8, 9, 10] uses

ε2n−1,2n(x) = β0x+
1

β1x+
1

. . .+
1

β2nx

(1.4)
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Figure 1: Maximal error of the Zolotarev approximation over the region [ε ,1] as a function of ε and Ls.

The Euclidean Cayley Transform form connects the overlap form to the domain wall form [7, 11,
12, 13, 14]. It uses

ε2n−1,2n(x) =
T−1(x)−1
T−1(x)+1 , T (x) =

2n

∏
i=1

1−ωix
1+ωix

(1.5)

T is the transfer matrix in the fifth dimension, and the ωi come from the specific approximation.
There are various approximation functions for sgn(H). These approximations give coeffi-

cients for all the representations mentioned above. One can also supplement the approximation
with eigenvectors of the H operator to decrease errors [6]; projection can be used in all represen-
tations [12]. The original Higham-Tanh approximation [15] (a.k.a. Neuberger’s Polar form [5])
is

ε2n−1,2n(x) = tanh
(

−2n ln
∣
∣
∣
∣

1− x
1+ x

∣
∣
∣
∣

)

= tanh(2n tanh−1(x)) =
(1+ x)2n − (1− x)2n

(1+ x)2n +(1− x)2n . (1.6)

We note that ε2n−1,2n(x) = ε2n−1,2n(1/x).
Over a desired approximation region (x ∈ [ε,1]), the approximation due to Zolotarev

ε2n,2n−1(x) = xRn,n(x
2), Rn,n(x

2) = A
∏n

l=1(x
2 + c̄2l)

∏n
l=1(x

2 + c̄2l−1)
(1.7)

with
c̄2l = −κ2sn2 (2iKl/n,κ) c̄2l−1 = −κ2sn2

(

iK
2l −1

n
,κ
)

(1.8)

has much reduced errors for a fixed number of poles compared to the “tanh” approximation. Here,
κ =

√
1− ε2 and K = K(κ) is the complete elliptic integral. The ω j are the locations in x where

ε2n−1,2n(x) = 1.
We plot in Figure 1 the maximal error of the Zolotarev approximation over the interval [ε,1]

as a function of Ls for various values of ε . The maximal error of the tanh approximation over the
same interval is very close to 1 - the maximal error occurs at x = ε .
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The kernel H - the auxiliary Dirac operator - is what determines the “physics” of the problem.
For example, this is where the discretization errors enter. There are an infinite number of choices
here, but some common variants are as follows. The overlap-like version is H = Hw = γ5Dw(−M)

where Dw(−M) is the Wilson-Dirac operator with supercritical mass1 0 < M < 2. In the Shamir
domain wall version, the induced operator is H = HT = Hw(2+a5Dw)−1 . The Möbius version [14]
H = (b5 + c5)Hw[2+(b5 − c5)Dw]−1 interpolates between Hw and HT .

One could use smeared links within the operator to improve the spectrum (see e.g. [16]).
We require H to be local, and differentiable (for dynamical fermion calculations). Ideally, the
approximation should cover the spectrum of H. Different choices of H lead to different spectra and
different O(a)-discretization effects in H and therefore to different O(a2) effects in the resulting
D4 operator.

2. Introducing the Schur Decomposition

The framework we shall use for 5D chiral fermion operators is based on Schur decomposition.
Using a 5D form gives the obvious benefit of inversion of 4D chiral operator within a single (5D)
Krylov space. Furthermore, this framework allows for a formal reduction of the 5D theory to
the 4D theory. It also allows for a formal derivation of the determinant of the 5D operator for
5D dynamical fermion calculations. Even-odd preconditioning can also be accommodated in this
framework.

Consider the 5D block matrix

M5 =

(

A B
C D

)

(2.1)

with D a 4D sub-matrix. The Schur decomposition of M5 is:

M5 = L̃D̃Ũ =

(

1 0
CA−1 1

)

︸ ︷︷ ︸

L̃

(

A 0
0 S

)

︸ ︷︷ ︸

D̃

(

1 A−1B
0 1

)

︸ ︷︷ ︸

Ũ

where S = D−CA−1B (2.2)

is referred to as the Schur Complement. The essence of the 5D framework is that D4(m) (or DH
4 (m))

is the 4D Schur Complement of M5 (or of a unitary transformation of M5). The use of the Schur
Complement in 5D formulations was advocated in [7] in connection with multigrid techniques.

The Schur decomposition automatically provides inversion of the 4D system through inversion
of the 5D system. We have

M5

(

φ
ψ4

)

=

(

0
χ4

)

⇒

D̃
︷ ︸︸ ︷(

A 0
0 S

)

Ũ

(

φ
ψ4

)

︷ ︸︸ ︷(

φ +A−1Bψ4
ψ4

)

=

L̃−1

(

0
χ4

)

︷ ︸︸ ︷(

0
χ4

)

. (2.3)

and it is clear, that solving the 5D system solves the 4D system Sψ4 = χ4.
1Also referred to as the domain wall height
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The Schur decomposition also provides the determinant and the effective 4D operator. By
inspection of eq. (2.2), we see that det(L̃) = det(Ũ) = 1⇒ det(M5) = det(A)det(S). As a conse-
quence, we need an operator that will cancel bulk 5D modes in M5 (i.e., det(A)). This operator is
often called the Pauli-Villars operator which we define here as follows:

MPV = L̃D̃PVŨ , D̃PV =

(

A 0
0 1

)

⇒ det(MPV ) = det(D̃PV ) = det(A) . (2.4)

Formally at least, M5M−1
PV is an effective 4D operator:

M5M−1
PV

(

0
ψ4

)

= L̃

(

1 0
0 S

)

L̃−1

(

0
ψ4

)

=

(

0
Sψ4

)

. (2.5)

We can now connect the Schur complement formalism to the 5D action and path integral (the
constraints). Requiring the existence of A−1 and the positivity of S only, we have for the partition
function:

Z =
∫

dUdψdψ̄ exp
{
−ψ̄

(
M5M−1

PV

)
ψ
}

=
∫

dUdψdψ̄ exp
{

−ψ̄L̃

(

1 0
0 S

)

L−1ψ

}

(2.6)

=
∫

dUdχdχ̄ exp
{

−χ̄

(

1 0
0 S

)

χ

}

, defining χ̄ = ψ̄ L̃,χ = L̃−1ψ (2.7)

∝
∫

dUdχ4dχ̄4 exp{−χ̄4Sχ4} . (2.8)

The path integral needs MPV M−1
5 , but in general MPV involves A−1 (in L̃) which can be a dense

operator. However, one can always construct D̃PV which needs only A. The resulting partition
function is

Z =
∫

dUdφ †dφ dη†dη exp
{
−φ †M−1

5 φ −η†D̃PV η
}

=
∫

dUdet(A)det(S)/det(A)=
∫

dU det(S) .

(2.9)
In Hybrid Monte Carlo, one uses M†

5 M5, D̃†
PV D̃PV to ensure integrals converge. Single flavor theo-

ries can be simulated with RHMC and taking the square and fourth roots of the squared operators.

3. Matrix Representations

We now turn to the specific 5D representations used in this work. For purposes of illustration,
we will consider unpreconditioned systems with short 5D extents.

Partial Fraction: Let us begin with the partial fraction operator of ref. [17]. We show below
partial fraction expansion with only two poles. The operator is

M5 =










H −√
q2 0 0 0

−√
q2 −H 0 0 √

p2
0 0 H −√

q1 0
0 0 −√

q1 −H
√

p1
0 √

p2 0 √
p1 Rγ5 + p0H










=








A B

C D








, (3.1)
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and the Schur Complement is just the pole approximation to DH
4 (m):

S = Rγ5 + p0H +
p1

H +q1H−1 +
p2

H +q2H−1 = Rγ5 +H

(

p0 +
2

∑
i=1

pi

H2 +qi

)

≈ DH
4 (m) (3.2)

and all the results of the section 2 follow.

Continued Fraction: For the continued fraction representation, we illustrate the matrix in the
2n+1 = 3 case:

M5 =






β2H 1 0
1 −β1H 1
0 1 Rγ5 +β0H




 (3.3)

We apply the Schur decomposition recursively. In order to form S we need to invert it using its
Schur complement S1 and so forth. Finally we arrive at

M5 =






1 0 0
S−1

2 1 0
0 S−1

1 1











S2 0 0
0 S1 0
0 0 S











1 S−1
2 0

0 1 S−1
1

0 0 1




 (3.4)

where

S2 = β2H, S1 = −β1H −S−1
2 (3.5)

S = Rγ5 +β0H −S−1
1 = Rγ5 +β0H +(β1H +(β2H)−1)−1 (3.6)

≈ DH
4 (m) (3.7)

and the outermost Schur complement is S = DH
4 and all the previous results apply.

Domain Wall: The domain wall formalism can be written in a Cayley transform Schur comple-
ment system [7, 11, 12, 13, 14]. To simplify the formalism, we apply a unitary transformation
(defined in [12]) on the domain wall kernel to bring each chiral half of the physical field onto the
same wall. We find that (using a length of 2n = 4 in the 5th dimension for illustration):

Q−1
− γ5M5P =








1 −T−1
2 0 0

0 1 −T−1
3 0

0 0 1 −T−1
4 c+

−T−1
1 0 0 c−








, (3.8)

where
Ti =

1−ωiH
1+ωiH

, c± =
1−m

2 ± 1+m
2 γ5 . (3.9)

The Schur complement is:

S = c− +T−1
1 T−1

2 T−1
3 T−1

4 c+, define T−1 = T−1
1 T−1

2 T−1
3 T−1

4

= −(T−1 +1)γ5

[
1+m

2 +
1−m

2 γ5
T−1 −1
T−1 +1

]

= M5(m = 1)D4(m) . (3.10)

We find that the domain wall system is a little different from the others. We see that det(A) = 1
and S = M5(m = 1)D4(m). On the other hand, one can define MPV = M5(m = 1) which simplifies
its use and provides a local 5D operator. This result implies M−1

PV M5 = D4(m) is an effective 4D
operator. Remaining results then follow from the Schur complement machinery.
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Figure 2: Comparison of the determination of mres using either a fit in 4D or 5D to mres(t).

Preconditioning and Implementation Tricks: Suppose our operator H is a ratio of two opera-
tors, H = HNH−1

D (e.g., the kernel is HT or HMoebius.) In this case, we naively have an inversion
in our 5D operator, resulting in a nested inversion. We overcome this, by rationalizing the denom-
inator and solving M5HDH−1

D ψ = χ . We proceed in two steps, first solving (M5HD)ψ ′ = χ , then
ψ = HDψ ′. After collecting terms in M5HD, we have just one extra H application to reconstruct ψ .

All three formulations allow continuous equivalence transformations on the approximation
coefficients which may be used to make the operator better conditioned.

Even-odd preconditioning follows directly from the Schur decomposition framework devel-
oped so far. The main consideration is the even-odd block decomposition of the 5D operator2.
If

M5 =

(

Mee Meo

Moe Moo

)

=

(

1 0
MoeM−1

ee 1

)(

Mee 0
0 Moo −MoeM−1

ee Meo

)(

1 M−1
ee Meo

0 1

)

(3.11)

and if Mee preserves the structure of M5, then the Schur decomposition of M5 suggests the efficient
application of M−1

ee : one should Schur decompose Mee.

For the representations presented here, the efficient use of even-odd preconditioning depends
on H. For general H = HMoebius, we see that M−1

ee does not depend on the gauge fields and can be
efficiently applied to a vector.

4. Numerical Results

4.1 Which 5D Fermion Action?

We want to evaluate the “cost” of various chiral fermion actions. Here, we only consider 5D
inversions for use in the force term in HMC and no eigenvector projection is used. We thus have
a residual mass. We choose a winner using a cost metric, which is the number of Wilson-Dirac
applications for fixed residual mass. Using the denominator rationalization trick mentioned earlier
we find that if a general Möbius DWF operator requires 2n applications of Dw, the corresponding

2This is also a Schur Decomposition
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Figure 3: Comparison of the pion correlator and effective mass for various actions, demonstrating how
different variants of 5D operators reduce to the same effective 4D operator. The different kernels Hw and
HT produce different pion correlators, but the pion mass is tuned to the same value. The difference in mass
coming from the difference between the tanh and Zolotarev coefficients is too small to show up on these
plots.
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Figure 4: In the upper panel is shown the residual mass per configuration for various 5D actions using H =

Hw. Here, “Zolo” is the Zolotarev version of Continued Fraction, “Tanh” is the tanh version of Continued
Fraction, “NEF” is the tanh domain-wall like variant, and “Zolo NEF” is the Zolotarev domain-wall like
variant. In the lower panel is the ratio of extremal eigenvalues for Hw per configuration.

Continued or Partial fraction operators require 2n+1 such applications. In the case of H = Hw, all
formulations require only 2n applications of Dw (since β0 = 0 in the continued fraction and p0 = 0
in the partial fraction case).

4.2 Residual chiral symmetry breaking

For our cost comparisons, we note that the 5D definition of the residual mass has been related
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to the 4D effective operator [14, 18]:

mres =
∑x〈Q̄xγ5Qx q̄0γ5q0〉

(1−m)2〈∑x q̄xγ5qx q̄0γ5q0〉
=

∑x Tr (D†
4(m))−1

x,0∆x,yD−1
4 (m)y,0

∑x Tr G†
x,0Gx,0

(4.1)

Here, G = 1
1−m(D−1

4 (m)− 1) is the usual subtracted propagator of the 4D overlap formalism, and
∆ is the breaking term in the Ginsparg-Wilson relation from the approximation where ε 6= sgn:

2γ5∆= γ5D4(0)+D4(0)γ5 −2D4(0)γ5D4(0) ⇒ ∆ =
1
4
(
1− ε2(H)

)
. (4.2)

where we have used D4(0) = 1
2(1 + γ5ε(H)). We see that mres 6= 0 is purely a deficiency of the

approximation ε(H) ≈ sgn(H). Further, the numerator in eq. (4.1) can easily be computed in 4D
using the pole approximation of ε(H). Thus, we can compare chiral breaking for all formulations
on an equal footing.

Summation is carried out over both spatial and temporal coordinates in (4.1). If one does not
sum over time, the resulting time-sliced correlation function is not identically equal to the usual
Domain Wall mres(t). However, since ∆x,y is a local operator, at low energies the two are very
similar as can be seen by observing fig. 2. Further, at the cost of introducing a small contact term
on the source time-slice and a term that vanishes in the ensemble average one may replace the D−1

terms in eq. (4.1) by the subtracted propagators G. In our computations, this simplification was
used, however, apart from figure 2 we always carried out the temporal sum.

4.3 Setup

For our numerical tests, we used 15 N f = 2 domain-wall fermion configurations (provided by
RBC [19]) with Ls = 12 and amq = 0.02 corresponding to mπ = 500MeV. We compare the cost of
inversions for even-odd preconditioned Möbius variants of 5D Partial Fraction, Continued Fraction,
and Domain Wall operators. We use only a CGNE inverter. Unfortunately, BiCG-stab and MR are
not convergent. In all tests, we used a target residual of 10−7 and M = 1.8 in Dw. We tuned the
pion mass of our 5D operators using H = Hw to match the domain-wall pion mass which resulted
in an amq = 0.0115.

We computed the cost (number of Wilson-Dirac applications) for multiple Ls with the tanh
and Zolotarev approximations. For the latter, we found the largest eigenvalue of HT and Hw to be
about 1.6 and 5.8, respectively. We set the upper bound of the approximation to this λmax, and set
the lower bound to a fixed ε ×λmax where ε = 0.01 in practice.

4.4 Equivalence of representations/variants

In Figure 3, we show the pion correlator for different representations and approximations at
the tuned pion mass. We see that the deviations from each other are small and under control.

4.5 mres per configuration

In Figure 4 we show a plot of mres per configuration for various actions using H = Hw. We
see that the “tanh” versions of domain-wall and continued fraction agree as expected. Also, the
Zolotarev versions of domain-wall and continued fraction agree for the first configuration. We did
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Figure 5: Cost in Wilson-Dirac applications vs. mres for the most promising 5D actions.

not measure the Zolotarev version of the domain wall for the remaining configurations as the cost
appeared too expensive, however, we expect similar agreement we see for the first configuration.
We also see that in the “tanh” approximation cases the mres is notably higher than in the Zolotarev
cases. This is consistent with the much larger approximation errors ε(x) in polar form compared to
Zolotarev.

The notable exception to a small mres is configuration 10 where the lowest eigenvalue of Hw is
quite small. We find that fixing the approximation range is preferable to allowing it to vary. What
we are seeing is an interplay of the density of eigenvalues of Hw and the approximation accuracy.
The eigenvectors of Hw are also eigenvectors of ∆ which can be written as

∫
dλρ(λ )∆L(λ ) =

(1/4)
∫

dλρ(λ )(1− ε(λ )2). If the density of small modes is low, it is not worth increasing the
approximation range to accommodate the low modes. Increasing the approximation range increases
the maximum error which thus magnifies ∆ for all modes - not just the smallest modes. In our tests
we therefore fixed the maximal range of the approximation. We note that is no worse than a “tanh”
approximation where the approximation is fixed for a given order of the rational approximation.

4.6 Cost versus mres

In our tests we compare the cost of inverting the even-odd preconditioned 5D operators versus
mres. We note that this preconditioning gives between a factor of 1.5-3 speedup over the unprecon-
ditioned systems. The cost of applying M−1

ee is negligble in flops; however, some care is needed in
writing optimized codes due to memory loads in Mee. The goal is small mres for small cost.

In Figure 5 we plot the cost versus mres for the most promising actions. Many of the Zolotarev
variants were very expensive and not shown. We remark, however, that we did not explore possible
further tuning of the condition of our operators via equivalence transformations on our coefficients,
which may reduce the cost of these expensive variants. Having said this, of all the actions we
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Figure 6: Cost in Wilson-Dirac applications vs. ∆2 for some of the 5D actions in Figure 5.

tested, the standard domain-wall (HT ) is the least effective. The Zolotarev Continued Fraction
(Hw and HT ) are the top candidates. The Zolotarev Partial Fraction version is promising. We
note that rescaling the coefficients b5 + c5 in HMoebius with b5 − c5 = 1 is equivalent to a rescaling
α = b5 + c5 in ε(αHT ). For the tanh approximation, we can slide the HT down inside ε(HT ) to
lower approximation errors. We see this rescaling results in a corresponding decrease in mres at no
cost increase.

In Figure 6 we plot the cost versus the second moment ∆2. We see no large shift in cost
corresponding to wild oscillations that cancel in mres but not in ∆2.

5. Summary and conclusions

We have presented a unified framework for 5D chiral operators. The crux of the framework
is the Schur decomposition and Schur complement techniques. The framework is agnostic about
representation, approximation or the kernel. The framework accommodates (and can help with)
even-odd preconditioning. In practice, the computational cost of a 5D formulation depends upon
the spectral properties of M5 and upon mres. While mres is an artifact of the approximation ε(H),
it depends not only on how good the approximation is, but also how much of the spectrum of H
is not well approximated (e.g., the near-zero modes of H). The condition of M5 depends upon
its matrix structure and coefficients, e.g., the approximation and representation and potentially on
further tuning of the condition through equivalence transformations and permutation symmetry.

We have presented a detailed comparison of the “cost” of various chiral fermion actions, where
cost is the number of Wilson-Dirac applications for fixed mres in a conjugate gradient solver. We
have found the standard domain-wall action is the least effective. The Zolotarev versions of Con-
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tinued Fraction (with H = Hw and HT ) appear to be among the best. Future work will focus on
dynamical fermion implementations of this operator.
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