
P
o
S
(
L
A
T
2
0
0
5
)
1
4
9

Two Color QCD beyond the BEC régime

Simon Hands∗†

University of Wales Swansea
E-mail: s.hands@swan.ac.uk

Seyong Kim
Sejong University, Seoul
E-mail: skim@sejong.ac.kr

Jon-Ivar Skullerud
Trinity College, Dublin
E-mail: jonivar@maths.tcd.ie

We present results of simulations of Two Color QCD using two flavors of Wilson quark in the
fundamental representation, at non-zero quark chemical potential µ , on an 83×16 lattice. Results
for the quark number density, quark and gluon energy densities, and superfluid condensate are
qualitatively distinct from the behaviour expected on the assumption that the dominant degrees of
freedom are tightly bound scalar diquarks which Bose condense; rather the scaling with µ is more
suggestive of a Fermi surface disrupted by a Cooper pair condensate. We also present evidence
both for screening of the static potential, and color deconfinement, arising solely as a result of a
non-zero quark density.

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

∗Speaker.
†PPARC Senior Research Fellow

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
2
0
0
5
)
1
4
9

Two Color QCD Simon Hands

1. Preamble

QCD with gauge group SU(2) and quark chemical potential µ 6= 0 has enjoyed much recent
interest [1]. It lies in a class of models with long-ranged interactions (together with QCD with
non-zero isospin chemical potential (ie. µu = −µd) and vectorlike theories with adjoint quarks) in
which the quark determinant detM(µ) is real, and hence amenable to study using standard LGT
algorithms.

In Two Color QCD, q and q̄ fields live in equivalent representations of the color group SU(2),
implying that chiral multiplets contain both qq̄ mesons and qq baryons. In the chiral limit where
mπ � mρ , where ρ generically denotes any non-Goldstone hadron, it is possible to study the µ-
dependence of the model systematically using chiral perturbation theory (χPT) [2]. The key result
is that the ground state has non-zero quark density nq > 0 for all µ greater than some onset value
µo = 1

2 mπ . At the same point a superfluid order parameter 〈qq〉 6= 0 develops, signalling spon-
taneous breakdown of the original global U(1) baryon number symmetry. Since the transition is
second order the matter, consisting of tightly-bound qq scalars, may be arbitrarily dilute, and in
the limit µ → µo+ is a textbook Bose-Einstein Condensate (BEC). In this régime the quantitative
predictions of χPT read:

nq ∝ f 2
π (µ −µo); 〈qq〉 ∝

√

1−
(

µ0

µ

)4

⇒ lim
µ→∞

〈qq(µ)〉 = const. (1.1)

This behaviour has indeed been confirmed by simulations with staggered fermions [3, 4, 5]
This picture should be contrasted with another paradigm for superfluidity, namely BCS con-

densation of weakly interacting quark Cooper pairs from opposite points of a Fermi surface with
radius kF ≈ EF = µ . For such a system, we obtain nq simply by counting states within the Fermi
sphere, and the condensate by assuming that only states within a layer of thickness ∆ � µ around
the Fermi surface participate in the pairing:

nq ∝ µ3; 〈qq〉 ∝ ∆µ2. (1.2)

The same rule of thumb predicts the quark energy density εq ∝ µ4.
We might expect the crossover from BEC to BCS for (µ −µo) �

1
2 (mρ −mπ), at which point

the Goldstones are no longer distinguished hadrons, and the fermionic nature of the constituents
comes into play. The chiral limit is thus unimportant, and for this reason we have chosen to re-
visit Two Color QCD using Wilson fermions [6]. Pioneering simulations by the Hiroshima group
appeared in [7]. As shown below, an advantage of the Wilson formulation is that simulations
with N f = 2 quark flavors are possible, ensuring the theory is asymptotically free and confining
for µ = T = 0 for all couplings, with a controllable continuum limit as β → ∞. This makes the
Wilson LGT particularly suitable for a study of gluodynamics in the presence of a background
baryon charge density, though it should be stressed that in contrast to 3-color QCD, there is here
no physical distinction between fundamental and anti-fundamental charges.

2. Formulation and Simulation

The N f = 2 quark action we want to simulate is as follows:

S = ψ̄1Mψ1 + ψ̄2Mψ2 − Jψ̄1(Cγ5)τ2ψ̄ tr
2 + J̄ψ tr

2 (Cγ5)τ2ψ1, (2.1)
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where flavor indices are written explicitly, and we have included scalar isoscalar diquark source
terms, which will help to reduce IR fluctuations in the superfluid phase [5]. The action coincides
with that of [6] with the identification J = 2̄, J̄ = 2 j. The charge conjugation matrix C defined
by CγµC−1 = γ∗µ with γ∗µ = γ tr

µ in Euclidean metric has the properties C† = C−1 = −C, [C,γ5] = 0.
The crucial Two Color identity is τ2Uµ(x)τ2 = U∗

µ(x). The source strengths J and J̄ are a priori
independent and their signs are arbitrary for now. The matrix M is the textbook Wilson fermion
operator

Mxy(µ) = δxy −κ ∑
ν

[(1− γν)eµδν0Uν(x)δy,x+ν̂ +(1+ γν)e−µδν0U†
ν (y)δy,x−ν̂ ] (2.2)

with properties

γ5M(µ)γ5 = M†(−µ) (2.3)

Cτ2M(µ)C−1τ2 = Mtr(−µ) (2.4)

⇒ (Cγ5)τ2M(µ)(Cγ5)
−1τ2 = M∗(µ) (2.5)

Property (2.5) implies detM(µ) is real, but because M contains both hermitian and antihermitian
non-constant components there is no proof that it is positive. This confirms the impossibility of
simulating a single Wilson flavor without a Sign Problem, and also suggests that even for N f even
there is an ergodicity problem along the lines of that found for adjoint staggered fermions [4], where
changing the sign of detM requires an eigenvalue to flow through the origin, which the Two-Step
Multi-Bosonic algorithm can manage but the Hybrid Monte Carlo (HMC) algorithm not.

Now, with the change of variables φ̄ = −ψ tr
2 Cτ2, φ = C−1τ2ψ̄ tr

2 and the dropping of the index
from flavor 1, eq. (2.1) can be recast as:

S = (ψ̄ , φ̄ )

(

M(µ) Jγ5

−J̄γ5 M(−µ)

)(

ψ
φ

)

≡ Ψ̄
�

Ψ. (2.6)

Note that the action is bilinear in the variables Ψ, Ψ̄, so that the Grassmann integral yields a factor
det

�
rather than a Pfaffian. Using the identity

det
(

X Y
W Z

)

= detXdet(Z−WX−1Y ) (2.7)

and properties (2.3,2.4) we deduce

det
�

= det(M†(µ)M(µ)+ JJ̄). (2.8)

Hence positivity of det
�

requires the product JJ̄ to be real and positive, which translates into
the requirement that the diquark source term be antihermitian [6]. Since no eigenvalue of

�
can

vanish, the ergodicity problem is also cured.
Now use (2.6) to write

� † �
=

(

M†(µ)M(µ)+ |J̄|2

M†(−µ)M(−µ)+ |J|2

)

. (2.9)
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The off-diagonal terms can be shown to vanish if J̄ = J∗ using (2.3); moreover the same identity
applied to the lower block yields

det
� † �

= [det(M†(µ)M(µ)+ J̄J)]2. (2.10)

It is therefore possible to take the square root analytically, by using pseudofermion fields with
weight (M†M + |J|2)−1. This has the advantage of (a) requiring matrix/vector multiplications of
the half the dimensionality, and (b) permitting a hamiltonian evaluation and hence the use of an
exact HMC algorithm. It is equivalent to the even/odd partitioning step used for staggered fermion
gauge theories, but is more transparent since all lattice sites are physically equivalent, making the
force term easier to implement. The trick was used in [5], though because the staggered version
still requires a Pfaffian rather than a determinant, an HMD algorithm was used in that case.

3. Observables

The most fundamental is the quark density, obtained as a derivative of the free energy:

nq ≡−
1
V

∂ ln �
∂ µ

=
1

V �

∫

DΨDΨ̄(ψ̄ , φ̄ )

( ∂M
∂ µ

− ∂M
∂ µ

)(

ψ
φ

)

e−S

= κ〈ψ̄x(γ0 −1)eµU0(x)ψx+0̂ + ψ̄x(γ0 +1)e−µU†
0 (x− 0̂)ψx−0̂〉

−κ〈φ̄x(γ0 −1)eµU0(x)φx+0̂ + φ̄x(γ0 +1)e−µU†
0 (x− 0̂)φx−0̂〉. (3.1)

The apparently unphysical term −2κ〈ψ̄(∂0 − µ)ψ〉 is irrelevant in the long wavelength limit. We
have checked that at saturation limµ→∞ nq = 2N f Nc. The quark energy density εq is approximated
by the same expression with a relative minus sign between forward and backward timelike links.

For the diquark condensate, it is convenient first to introduce rescaled source strengths { j, ̄}=

κ−1{J, J̄}, and then the orthogonal combinations j± = j± ̄. We then have

〈qq±〉 ≡ −
1
V

∂ ln �
∂ j±

=
κ
2
〈ψ̄γ5φ ∓ φ̄ γ5ψ〉. (3.2)

Since the diquark condensate is not a component of a conserved current, its normalisation is to
some extent arbitrary: we prefer to normalise it with the same factor of κ as the quark density.

4. Results

We have studied an 83 × 16 lattice with parameters β = 1.7, κ = 0.1780, using a standard
Wilson plaquette action. Unfortunately our results are not directly comparable with those of [7]
due to their use of an improved gauge action. Studies of the µ = 0 string tension yield a lattice
spacing a = 0.220fm, and the spectrum mπ a = 0.800(2), mπ/mρ = 0.920(3) [6]. In simulations
with µ 6= 0 we have used a diquark source ja = 0.04. So far we have accumulated roughly 300
HMC trajectories of mean length 0.5 for µa ∈ [0.3,0.9].

In Fig. 1 we plot quark observables (with a suitable subtraction so that εq(µ) = 0), and in Fig. 2
the gluon energy density εg = 3β

2 〈tr(�t −�s)〉 and Polyakov line, by far the noisiest observable.
The behaviour of the superfluid condensate 〈qq〉 vs. µ is qualitatively very different from the
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Figure 1: Quark observables Figure 2: Gluon observables
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Figure 3: Quark number density vs. µ3 Figure 4: Diquark condensate vs. µ2

negative curvature seen in the j → 0 limit in studies with staggered fermions[3, 4, 5]. Moreover
the magnitude of nq(µ) is much smaller, suggesting following (1.1) that the effective fπ is much
smaller, and hence the hadron degrees of freedom more strongly interacting.

This motivates us to replot the data following (1.2), as shown in Figs. 3 & 4. There is some
evidence to support the formation of a Fermi sphere; nq increases if anything more rapidly than
µ3, although the impact of lattice artifacts has still to be determined. Similarly, the condensate is
consistent with BCS behaviour being recovered in the j → 0 limit, though data at smaller j will
be required to confirm this. The most spectacular evidence for a Fermi sphere comes from the
energy densities, plotted in Fig. 5. A significant fraction of the energy density, O(30%), comes
from gluons, suggesting that the medium which forms is strongly-interacting. Finally in Fig. 6 we
show the static quark potential V (r), showing clear evidence for screening for µa ≥ 0.4.

5. Outlook

The parameter set chosen for our initial study appear to place the Two Color quark medium in a
qualitatively different régime from that described by χPT and studied numerically using staggered
fermions. If our guess that the system has a Fermi surface disrupted by a diquark condensate is
borne out by further analysis, then the system may have a lot more in common with high density
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Figure 5: Quark and gluon energy densities vs. µ4 Figure 6: Static potential V (r) for various µ

QCD than originally thought. One exciting possibility is that the onset transition predicted by
χPT at µoa ' 0.4 does not coincide with the deconfining transition, which the Polyakov loop data
of Fig. 2 suggest may not occur until µa ≈ 0.6(1). Future study will also focus on the hadron
spectrum, inspired by the evidence for decrease in mass for vector states reported in [7], and a
study of the gluon propagator.
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