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1. Introduction

To study the nature of matter in QCD at high temperatureT or large quark chemical potentialµ
is one of the most challenging issues in particle physics. Several novel phases have been proposed,
such as quark-gluon plasma and color superconductivity. Precise determination of the QCD phase
diagram on the (µ,T) plane will provide valuable information for experimental search.

In the continuum, the grand canonical partition function of QCD at finiteT andµ is

Z = Tr exp

(
−H−µN

T

)
, (1.1)

whereN is particle number operatorN =
∫

d3x ψ†(x)ψ(x).
Monte Carlo (MC) simulation of lattice gauge theory (LGT) is the most popular nonpertur-

bative method based on the first principles. This approach has been successfully applied to QCD
at finiteT with zeroµ. However, LGT experiences serious problems, like species doubling with
naive fermions and complex action at finiteµ.

The Hamiltonian formulation of LGT at finiteµ does not have the complex action problem[1,
2, 3, 4]. The complex action problem in Lagrangian formulation forbids numerical simulation at
real µ. The recent years have seen enormous efforts[5, 6, 7, 8] on solving the complex action
problem.

There have been several popular approaches to solving the species doubling problem of naive
fermions. The staggered (KS) fermion approach preserves the remnant of chiral symmetry, but it
breaks the flavor symmetry and doesn’t completely solve the species doubling problem. The Wilson
fermion approach avoids the doublers and preserve the flavor symmetry, but it explicitly breaks the
chiral symmetry; In order to define the chiral limit, one has to do nonperturbative fine-tuning of the
bare fermion mass.

The overlap fermion approach[9, 10] is claimed to have the properties that chiral symmetry is
preserved and species doubling problem may be solved. However, the Dirac operator is nonlocal,
and the computational costs for simulating dynamical overlap fermions are typically two orders of
magnitude heavier than for the Wilson or KS formulations. It is also very tough to introduce the
chemical potential into the action. Before the breakthrough of numerical algorithms for applying
overlap fermions to QCD thermodynamics, it is very useful to do an analytical study.

In this paper, we summarize our study on above issues using Hamiltonian LGT with Wilson
fermions, and Lagrangian MC simulations with four flavors of Wilson fermions. We also present
some new results from strong coupling analysis of Lagrangian LGT with overlap fermions.

2. Hamiltonian lattice QCD with Wilson fermions

We begin with the QCD Hamiltonian with Wilson fermionsH = Hg + H f at µ = 0 on 1
dimensional continuum time andd = 3 dimensional spatial discretized lattice, where

Hg =
g2

2a ∑
x

d

∑
j=1

8

∑
α=1

Eα
j (x)Eα

j (x)− 1
ag2 ∑

p
Tr

(
Up +U+

p −2
)
,

H f =
1
2a ∑

x

d

∑
j=1

[
ψ̄(x)(γ j − r)U j(x)ψ(x+ ĵ)− ψ̄(x)(γ j + r)U†

j (x− ĵ)ψ(x− ĵ)
]
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+
(

m+
rd
a

)
∑
x

ψ̄(x)ψ(x). (2.1)

According to Eq. (1.1), the role of the Hamiltonian at finiteµ is played byHµ = H − µN.
DenotingNf , Nc, V the number of flavors, colors, and spatial lattice sites, and|Ω〉 the vacuum state
when〈Ω|Hµ |Ω〉 is minimized. For free massless Wilson fermions atT = 0, we obtained[1] the
energy〈Ω|H|Ω〉= 2NcNf ∑p |p| [Θ(µ−|p|)−1], and the subtracted energy density in the infinite
volume limitV → ∞ and continuum limita→ 0

εsub=
〈Ω|H|Ω〉−〈Ω|H|Ω〉|µ=0

NcNfV
=

2

(2π)3

∫
|p| Θ(µ−|p|) d3~p =

8π
(2π)3

∫ µ

0
p3 dp=

µ4

4π2 ,

(2.2)
which agrees with the continuum theory. Therefore in the lattice Hamiltonian formulation, the
chemical potential could be introduced in a natural way as in the continuum.

For infinitely strongly interacting Wilson fermions, integrating out the gauge fields leads to
four fermion interactions[3]. Extreme conditions (largeT or µ) induce chiral phase transitions. For
Nf /Nc < 1 with Nc = 3, we obtained an equation for the critical line where the chiral condensate
and the dynamical mass of quark vanish continuously[4]

µ ′C =
(
1+ r2)

√
1− 2T ′C

1+3r2 +T ′C ln
1+

√
1− 2T ′C

1+3r2

1−
√

1− 2T ′C
1+3r2

. (2.3)

Here we have rescaled the chemical potential and temperature asµ ′ = µ/(3K/a) andT ′ = T/(3K/a),
with K being the effective coupling of four fermion interactions. Below someT ′3, there is a first
order chiral phase transition line[4]

µ ′C = 1+2r2, (2.4)

where the chiral condensate and the dynamical mass of quark vanish discontinuously. The point
when two lines described by Eq. (2.3) and Eq. (2.4) join at lowerT ′ is the tricritical point, as
shown by the filled circle in Fig.1.

3. Lagrangian lattice QCD with Wilson fermions

The lattice action atµ = 0 proposed by Wilson[11] is S= Sg +Sf , where

Sg = −β
6 ∑

p
Tr(Up +U†

p−2),

Sf = ∑
x,y

ψ̄(x)Mx,yψ(y),

Mx,y = δx,y−κ
4

∑
j=1

[
(r− γ j)U j(x)δx,y− ĵ +(r + γ j)U†

j (x− ĵ)δx,y+ ĵ

]
, (3.1)

with β = 6/g2 andκ = 1/(2ma+8r). The lattice HamiltonianH in Eq. (2.1) could also be derived
from the Wilson action by Legendge transformation.
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Figure 1: Phase diagram from Hamiltonian lattice QCD with massless Wilson fermions at strong coupling.
The solid and dotted lines stand respectively for the first and second order transitions. The circle is the
tricritical point.

However, naive introduction of the chemical potential would lead to divergentεsub in the con-
tinuum limit. In Ref. [12], the chemical potential is introduced by replacing the link variables in the
temporal direction in fermion action in Eq. (3.1) with U4(x)→ eaµU4(x) andU†

4 (x)→ e−aµU†
4 (x).

The fermionic action is reduced to the continuum one whena→ 0.
Nevertheless, the effective fermionic action in the partition function becomes complex, and

forbids MC simulation with importance sampling. Several revised methods, e.g., improved reweight-
ing [5] and imaginary chemical potential methods[6, 7], were proposed to simulate QCD with KS
fermions at finiteµ.

Lattice QCD at imaginary chemical potentialiµI does not suffer the complex action problem.
In Ref. [8], we applied this method to the MC study of the phase structure ofNf = 4 Wilson
fermions. We measured the expectation of the Polyakov loop, chiral condensate and their suscep-
tibilities for various(µI ,T) at someκ. From the position of the peak in the susceptibilities, we
determine the transition point. ReplacingµI by−iµ, we directly continue the transition line on the
(µI ,T) plane to the real(µ,T) plane.

Figure2 is the expected phase diagram of lattice QCD with Wilson fermions in the(µ,T,κ)
parameter space. There is a surfaceκ = κchiral where the pion becomes massless. Above this
surface, there is no phase transition, as confirmed by our numerical simulations forκ = 0.25.
Interesting physics is below this surface. Of course, the order of transition depends on the value of
κ. For r = 1, we findκ1 ∈ (0.001,0.15), κ2 ∈ (0.15,0.165) andκchiral ∈ (0.17,0.25).

4. Lagrangian lattice QCD with overlap fermions

The overlap fermionic actionSf has the form[10]

Sf = m∑ ψ̄(x)ψ(x)+∑
x,y

ψ̄(x)D(x,y)ψ(y),
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Figure 2: Phase diagram of lattice QCD with four flavors of Wilson quarks in the(µ,T,κ) parameter space,
from MC simulations. Forκ ∈ [0,κ1] andκ ∈ [κ2,κchiral ], the phase transition is of first order, and while for
κ ∈ (κ1,κ2), the transition is a crossover.

D = 1+X
1√
X†X

, (4.1)

wherea is set to be 1 for convenience. The operatorD is nonlocal and it is extremely difficult to
do analytical calculations. In Ref. [15], we used the Taylor expansion trick[13, 14] to derive an
overlap action at finiteµ

Sf =
(

1+
m
2

) C
|A|

(
∑
x

d

∑
j=1

[q̄(x)γ jU j(x)q(x+ ĵ)− q̄(x+ ĵ)γ jU
†
j (x)q(x)]

+∑
x

[eµ q̄(x)γ4U4(x)q(x+ 4̂)−e−µ q̄(x+ 4̂)γ4U
†
4 (x)q(x)]

)
+m∑

x
q̄(x)q(x), (4.2)

whereA = 4r −M0, andC = t/2, with t an expansion parameter. The fermion fieldsq andq̄ are
related toψ andψ̄ by [14]

q̄ = ψ̄, q =
(

1− 1
2

D

)
ψ. (4.3)

The chiral order parameter is then given by

〈q̄q〉= 〈ψ̄
(

1− 1
2

D

)
ψ〉. (4.4)

In Ref. [15], we studied the phase structure of LGT with overlap fermions on the(µ,T) plane
at the strong coupling. The phase diagram is shown in Fig.3. We find that the phase structure is
very similar to the Wilson fermion case.

5. Discussions

LGT with imaginary chemical potential could be used for simulating QCD at smallµ. The
overlap fermion approach is a promising one for investigating chiral properties of the phase transi-
tion, and the Hamiltonian lattice formulation is a more natural way to introduce chemical potential;
However, a lot of efforts have to be made before realistic MC simulations could be carried out.
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Figure 3: Phase diagram of lattice QCD with massless overlap fermions at strong coupling on the(µ,T)
plane. The dotted and solid lines stand respectively for the second and first order transitions. The circle is
the tricritical point.
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