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QCD with N f =2 is a specially interesting system to investigate the chiral transition. The order

of the transition has still not been established. We report the results of an in-depth numerical

investigation performed with staggered fermions on lattices with Lt=4 and Ls=12,16,20,24,32 and

quark masses amq ranging from 0.01335 to 0.307036. Using finite-size techniques we compare

the scaling behavior of a number of thermodynamical susceptibilities with the expectations of

O(4) and O(2) universality classes. Clear disagreement is observed. Indications of a first order

transition are found. Preliminary reports of this work were presented at past Lattice conferences.
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1. Introduction

The phase transition in N f = 2 QCD (mu = md ≡ m) can provide fundamental insight into the
mechanism of confinement[1].

In the limit m → ∞ the system is quenched, the deconfining transition is first order, 〈L〉 is the
order parameter and Z3 the symmetry. However the coupling to quarks breaks Z3.

At m ' 0 the deconfining transition seems to coincide with the chiral transition. A transition
line exists at intermediate values of m which is defined by the maxima of a number of susceptibili-
ties (the specific heat CV , the susceptibility χm of the chiral condensate 〈ψ̄ψ〉, the susceptibility of
〈L〉) which all coincide whithin errors (see e.g. Ref.[2]).

At m ' 0 a renormalization group analysis[3] indicates that the chiral transition is first order
for N f ≥ 3, and for N f = 2 can be either first order or second order in the universality class of
O(4). For the latter case the transition is a crossover at m 6= 0, and in particular a tricritical point is
expected in the T −µ plane[4] which could be observed in heavy ion collisions.

Various groups have studied this problem with Wilson[5] or staggered[6, 7, 2, 8, 9] fermions.
No clear sign of discontinuities is found at least for the lattice sizes used, but no agreement either
with the critical exponents of O(4).

We investigate the issue using standard Kogut-Susskind fermions on lattices 4×L3
s with Ls =

12,16,20,24,32 and lattice quark masses amq ranging from 0.01335 to 0.307036. In the present
work we give our final results using our whole dataset collected on APEmille machines and a
detailed analysis which is different in many points from the previous ones present in the literature.
Preliminary reports of this work were presented at past conferences.

2. Analysis of the critical behavior

The order of a phase transition can be investigated by finite size scaling analysis. Near the
critical point, for a second or a weak first order transition, the singular behavior is described by
power law divergences according to universal critical exponents. The singular part of the free
energy density Fs is a homogeneuos function of the reduced temperature τ ≡ 1−T/Tc, the lattice
quark mass amq and the size of the system Ls:

Fs(τ,amq,Ls) = L−d
s Fs (τLyt

s ,amqLyh
s ) (2.1)

There are two independent critical exponents: the thermal yt and the magnetic one yh. The other
more familiar critical exponents are given by (d = 3 is the dimensionality of the system):

α = 2−
d
yt

β =
d
yt
−

yh

yt
γ = 2

yh

yt
−

d
yt

δ = −
yh

d − yh
ν =

1
yt

(2.2)

The numerical values of the critical exponents of interest for this work are given in Table 1.
According to Eq. 2.1 this problem involves two scaling variables. We simplify the problem

restricting the parameter space in three different ways:

1. keep amqLyh
s fixed while varying Ls. One must choose a fixed value for yh so that only one

universality class at a time can be tested. Note that by chance the numerical value of yh is
the same for O(4) and O(2), so in practice we can test these two critical behaviors at once.
The scaling law for Fs is given by: Fs = L−d

s Fs (τLyt
s ) where now amq is a function of Ls;
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2. keep τ and amq fixed and take the limit Ls → ∞ (finite mass scaling, Ref. [2, 8, 9]). This
amounts to assume the existence of one single scale (amq) in the problem, and no divergence
of the correlation length at the transition: i.e. finite mass scaling and no finite size scaling.
Eq. (2.1) becomes: Fs = amd/yh

q Fs(τam−yt/yh
q ) where the size of the system Ls is not present;

3. the last possibility is to keep τLyt
s fixed while taking Ls much bigger than the pion cor-

relation lenght: aLs � 1/mπ . This should work better than case 2. if the correlation
lenght becomes large and comparable to Ls. The free energy scaling law in this case is:
Fs = amd/yh

q Fs (τLyt
s ).

In cases 2. and 3. we are not forced to fix yh so we are free to test all the critical behaviors of
interest. The price for this is that we were forced to make additional approximations.

Taking appropriate derivatives we find the relevant scaling laws for the thermodynamic sus-
ceptibilities1. In this work we concentrate on two of them: the specific heat CV and the chiral
susceptibility χm. Note that while the first quantity is always relevant, the second one is a good
quantity only if 〈ψ̄ψ〉 is the order parameter: that is certainly true for m = 0 but may not be for
m > 0. The expected behavior for the cases listed above are:

1. CV −C0 = Lα/ν
s φc(τL1/ν

s ) ; χm − χ0 = Lγ/ν
s φχ(τL1/ν

s ). i.e. the peaks scale as a power of Ls

and the widths as L−1/ν
s ;

2. CV −C0 = (amq)
−α/νyhφc(τ(amq)

−yt/yh) ; χm − χ0 = (amq)
−γ/νyhφχ(τ(amq)

−yt/yh). i.e. the
peaks scale as a power of amq and the widths as amyt/yh

q ;

3. CV −C0 = (amq)
−α/νyhφc(τL1/ν

s ) ; χm − χ0 = (amq)
−γ/νyhφχ(τL1/ν

s ). i.e. the peaks scale as
a power of amq and the width as L−1/ν

s .

To test different scaling hypotheses we have performed a huge amount of Monte Carlo sim-
ulations, divided into three groups (see Table 2). The first two are called Run1 and Run2 and
they satisfy the requirements of case 1., namely we have fixed amqLyh

s to two different values and

yt yh ν α γ β δ
O(4) 1.336(25) 2.487(3) 0.748(14) -0.24(6) 1.479(94) 0.3837(69) 4.852(24)
O(2) 1.496(20) 2.485(3) 0.668(9) -0.005(7) 1.317(38) 0.3442(20) 4.826(12)
MF 3/2 9/4 2/3 0 1 1/2 3

1stOrder 3 3 1/3 1 1 0 ∞

Table 1: Critical exponents of O(4), O(2), mean field and first order.

Run1 Run2
Ls 12 16 20 32 12 16 20 32

amq 0.153518 0.075 0.04303 0.01335 0.307036 0.15 0.08606 0.0267
# Traj. 22500 87700 14520 14500 25000 131390 16100 15100

aLs ·mπ 11.9 11.0 10.0 8.9 11.3 15.8 14.8 12.4

Table 2: Run parameters for our Monte Carlo simulations. A more detailed list can be found in Ref. [1].

1See Ref. [1] for the detailed definition of the susceptibilities on the lattice.
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Figure 1: Pseudocritical coupling values as a function of amq. The fit (explained in the text) has χ2/do f =

0.9, do f = 15. Values obtained from other collaborations are also included.

yh appropriate for O(4) and O(2). The third group is formed by two other simulations with the
following parameters: Ls = 16, amq = 0.01335; Ls = 24, amq = 0.04444; with 10000 trajectories
each. Simulations were made using the hybrid R algorithm sweeping a wide range of values of β
for each value of amq. The datasets collected were analysed using the multi-histogram reweighting
procedure.

3. Results

On the lattice the reduced temperature is expressed as a function of the parameters β , amq:

τ ≡ 1−
T
T0

= 1−
a(β0,0)

a(β ,amq)
(3.1)

where a(β ,amq) is the lattice spacing. Expanding a in power series near (β0,0) we obtain:

τ ∝ (β0 −β )+ kmamq + km2(amq)
2 + kmβ amq(β0 −β )+ · · · (3.2)

In previous works in the literature it was assumed that τ ∝ (β0 − β ) thus neglecting the lattice
spacing dependence on the lattice quark mass amq. The terms in Eq. (3.2) prove to be sufficient
to describe the data of our simulations. There are two different way the pseudocritical temperature
could scale: τc = kτL1/ν

s or τc = k′τamyt/yh
q . The expansion parameters and kτ or k′τ can be obtained

by fitting numerical data. The results are the following: there is no visible shift of τc varying Ls,
i.e. kτ is always compatible with zero; data are equally well described by all the critical behaviors
expected (first order, O(4), O(2), MF) if one includes in the expression of τc the quadratic terms
shown above; including only the linear terms the statement doesn’t change if we restrict the allowed
range of amq (see Ref. [1]); taking τc ∝ β0 −βc does not describe the data in any mass range at our
disposal for a second order while for a first order it is identical to keep only the linear mass term in
Eq. (3.2).

Having fixed the parameters for the reduced temperature τ (see Fig. 1) we can next consider
the scaling of CV and χm. We first consider case 1: using data from Run1 and Run2 we can
check O(4) and O(2) critical behaviors. If there is scaling all the curves obtained by plotting the
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Figure 2: Scaling behavior of CV and χm as expected in case 1. No sign of scaling is found. This excludes
a second order O(4) or O(2) transition. Simulations from Run1 are shown; Run2 is similar[1].

susceptibilities divided by the appropriate power of Ls as functions of the scaling variable τLyt
s

should collapse onto a universal scaling function. As shown in Fig. 2 no such scaling is observed
for O(4) (O(2) is quite similar). This clearly excludes these universality classes. To check other
critical behaviors we consider the scaling of cases 2. and 3. We show in Fig. 3 the analysis of CV :
similar considerations also apply to χm. The second order critical behavior does not describe our
data. The growth of the peaks is instead consistent with a first order. This is an indication for a
first order transition. The widths of the curves seem to be described by the scaling of case 3 and
not according to case 2. This means that the dependence on Ls cannot be neglected. We have also
explicitely observed consistent deviations from the scaling predicted in case 2. making simulations
at two different volumes with the same amq, see Ref. [1]. In fact this is due to the presence of two
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Figure 3: Scaling of CV according to case 2. (top) and 3. (bottom) for both O(4) (left) and first order (right).
Other second order behaviors are similar to the one shown.
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Figure 4: Scaling of 〈ψ̄ψ〉 for O(4) (left) and first order (right).

different physical scales in the problem.
One can also study the magnetic equation of state, i.e. the scaling of 〈ψ̄ψ〉 − 〈ψ̄ψ〉0 =

am1/δ
q F(τ/am1/νyh

q ) as shown in Fig. 4. Also in this case the first order behavior seems to de-
scribe well the data while the second order is excluded.

We have looked for metastabilities in the time histories as required by a first order transition:
no clear evidence exists up to the lattice sizes explored.

4. Conclusions and outlook

We have investigated the nature of the chiral transition in N f = 2 QCD. By using the correct
definition of τ on the lattice we have shown that it is not possibile to discriminate the order of the
transition by looking only at βc with the present data. Studying the critical behavior at fixed amqLyh

s

we were able to exclude the second order universality classes, i.e. O(4), O(2), mean field. We
found evidence for a first order transition looking at the scaling of thermodynamic susceptibilities
but no clear sign of discontinuities. The magnetic equation of state also seems compatible with
a first order transition. We plan to repeat the analysis at fixed amqLyh

s for a first order transition
employing an improved action and Lt = 6 to reduce possible artifacts.
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