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1. Finding the CEP by Taylor Expansion

In QCD with two flavours of quarks, the pressure and its Taylorexpansion are

P(T,µu,µd) ≡

(

T
V

)

logZ(T,µu,µd) = P(T,0,0)+ ∑
nu,nd

χnu,nd

µnu
u

nu!

µnd
d

nd!
(1.1)

whereT is the temperature,µu,d, the chemical potentials for each flavour (since weak interactions
are neglected, flavours are exactly conserved),V, the volume,Z, the partition function, and the
Taylor expansion is aroundµu = µd = 0. The Taylor coefficients are called quark number suscepti-
bilities (QNS). The coefficients of order higher than 2 were called non-linear susceptibilities (NLS)
in [1]. Most lattice computations are performed in the flavour symmetric limit,mu = md, which
forces the coefficients to have the symmetryχnm = χmn. Also, CP symmetry forcesχn,N−n = 0
wheneverN is odd.

We are interested in the critical end point in the plane ofT and the baryon chemical potential
µB = 3µu = 3µd. The second derivative

χ20(T,µB) =
∂ 2P
∂ µ2

u

∣

∣

∣

∣

µu=µd=µB/3
(1.2)

diverges at the critical point in the thermodynamic limit. We construct the Taylor series for this
QNS from (1.1). In [2] we extract the Taylor coefficients ofχ20(T,µB) from lattice simulations
in order to estimate the CEP. Note that we scan along lines of constantT. At the CEP the Taylor
expansion in (1.2) would break down. Hence, the radius of convergence of the series, in the ther-
modynamic limit, would give the position of the CEP providedthat there is no other critical point
nearer toµu = µd = 0.

Our analysis involves examination of finite volume effects in χ20(T,µB). On any finite volume,
as one scans along a line of constantT, one sees a peak in the QNS. With increasing volume one
sees larger and sharper peaks, which go smoothly into the non-analytic divergence in the thermo-
dynamic limit. This implies an interesting behaviour for the Taylor coefficients on finite volumes.
Estimates of the radius of convergence from terms up to some orderN;(V) should indicate a finite
value; but terms of order greater thanN;(V) would show a growth in the radius of convergence.
With increasingV one should observeN;(V) to be increasing. Estimates of the radius of conver-
gence have to be performed, perforce, at finiteV, and therefore only the estimates for orders less
thanN;(V) should be used, and continued to the thermodynamic limit using standard finite size
scaling methods.

The main systematic errors in the location of CEP by lattice methods are due to three sources—
lattice spacing effects, finite volume effects, quark mass effects. In this work we show that finite
volume effects can be controlled whenV = mπV1/3 > 5. By working in the large volume region
and taking small quark masses such thatmπ/mρ = 0.3 (close to the physical value) we are able to
control the last two sources of errors simultaneously for the first time. Lattice spacing errors will
be considered later. Our simulation parameters are listed in [2]. We expandP to 8th order inµB.
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Figure 1: The distribution of estimators of the traces involved in (a)χ20 and (b)χ11 on one configuration
at 0.8Tc by Gaussian distributed noise vectors. The different histograms in each case are labeled by the
number of vectors used to make one measurement. Noise in the measurement ofχ11 arises from the signifi-
cantly larger spread of the second (highly non-Gaussian) histogram with a much smaller mean, and therefore
requires many more vectors to control.

2. Optimizing the computations

Every derivative of logZ with respect toµ lands on the Dirac determinant, since this is the
part of the measure which containsµ . Every derivative of the determinant of a matrix creates an
inverse power of the matrix,i.e., a quark propagator in this example. Thus, when Taylor series
are examined at orderN, they may contain terms containing up toN propagators. On every gauge
configuration one is therefore required to construct fermion traces with many propagators, implying
a need for multiple Dirac matrix inversions. The way to optimize the number of inversions is to
map this problem on to a computer science problem called the “Steiner problem” [3]. Details are
given in [2].

Fermion traces are obtained using the usual stochastic method— random vectors are drawn
from some ensemble (usually Gaussian orZ2), the expectation of the operator is found on each
vector and the average is found over the noise ensemble. Optimization involves choosing the
ensemble and the number of vectors. We found that for this specific purpose the Gaussian ensemble
is superior to theZ2 noise ensemble. The number of vectors needed increases withthe order, and
at each order Fermion-line-disconnected operators require more vectors than connected operators.

Since multiple matrix inversions are required to on each gauge configurations, one may expect
a priori that some preconditioning or reuse of vectors may improve the performance of the inverter.
However, it turns out that the extra arithmetic effort involved in this is comparatively large, and
leads to gains of around 10% (with a less sparse Dirac operator, i.e., with improved actions,
there may be more gain). We therefore did not optimize the inversion in this manner. The main
optimization of the CG inverter was to tune the stopping criterion.

We measured the autocorrelations of the Wilson line and the quark condensate during the
R-algorithm run, and chose to analyze only one configurationper autocorrelation time, gathering
statistics of 50–100 configuration at each coupling on everylattice size. Since autocorrelations are
large in the vicinity of the QCD crossover temperature,Tc, it took massive computational effort to
generate sufficient statistics in this interesting region.The effort required in the measurements was
significantly smaller.
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Figure 2: The first panel shows the ratioχ11/χ20 as a function ofT/Tc. The second shows the scaled value
of χ20 from our computation (see text for details) compared to datafrom [5] and quenched QCD [6].

3. Non-linear susceptibilities

Different systematics are seen for non-linear susceptibilities (NLS) in the three regions, well
below Tc, nearTc and well aboveTc [4]. An example is provided by the ratioχ11/χ20 which
measures the importance of sign fluctuations in the partition function at small chemical potential.
This is of order unity at 0.75Tc, and decreases rapidly in the region nearTc, becoming of the
order of 10−3 at largeT (see Figure 2).χ20 itself crosses over from a small value belowTc to
a much larger values aboveTc. In Figure 2 the value shown is the observed value scaled by a
factor which would transform measurements ofχ20 in the quenched theory at the same lattice
spacing into the continuum. We have argued before that this procedure is within 5—10% of the
true continuum limit. Taking into consideration this uncertainty, and differences in quark masses
and lattice volumes, the values are in agreement with theNt = 8 computations with improved
staggered quarks of [5].

Well aboveTc there is a hierarchy of values of the NLS which is consistent with weak-coupling
power counting rules. In the vicinity ofTc these rules break down, and some of the NLS peak.
These peaks are found to be due to one particular class of operators, which measure fluctuations of
the fermion-line-connected operator,O2, contributing toχ20 [4].

4. The CEP

Given the Taylor expansion of an even functionf (x) = ∑n f2nx2n around the symmetric point
x = 0, one may define the radius of convergence,x∗, in several equivalent ways. Two definitions
which we use here are the limits of the successive approximants

ρ2n =

∣

∣

∣

∣

f0
f2n

∣

∣

∣

∣

1/2n

or r2n =

√

∣

∣

∣

∣

f2n

f2n+2

∣

∣

∣

∣

(4.1)

The results forχ20(µB) evaluated on two different volumes are shown in Figure 3 atT = 0.95Tc.
Note that the volume effects are compatible with the expectations discussed in Section 1.

One important question is whether the series diverges for real µB or imaginaryµB. If it is the
first possibility which is realized, then all terms in the series should be positive; if the second, then
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Figure 3: The two estimators of the radius of convergence of the seriesfor χ20(µB)— (a) ρ2n and (b)r2n.
The nature of the finite volume effects are clear.

-3

-2

-1

 0

 1

 2

 3

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

Bn
T

n-
2

χ

T/Tc

4.243

B
0/T2χ

B
2/2χ

B
4T  /122χ

0

1

2

3

4

5

6

5 10 15 20 25

2 4 6 8 10

/T
Bµ

mπ Ns

Ns

r4

r6

Figure 4: The first panel shows the Taylor coefficients ofχ20 at orders 0, 2 and 4 as a function ofT/Tc. The
second showsr4 andr6 atT = 0.95tc as a function ofV1/3 andV .
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Figure 5: Our evaluation of the critical end point for QCD in the thermodynamic limit compared to an
earlier evaluation [7]. Also shown is the freezeout curve inheavy-ion collisions with the center of mass
energy marked. It seems that energy scans at RHIC may see interesting physics.
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the series should alternate. We find that all the terms are positive in the range 0.8 ≤ T/Tc ≤ 1,
within which the CEP is located (see the first panel of Figure 4), indicating that the first possibility
is actually realized. ForNf = 2 the only other nearby critical point is that atµI /Tc = mπ/Tc = 1.6
for T = 0. This is further away from the origin than the critical point identified by the radius of
convergence. Hence we conclude that the radius of convergence identifies the CEP.

Finite size effects are of two kinds. At small volumes,i.e., whenV < 5 (in this formula the
appropriate value ofmπ to use is that measured in very large volumes atT = 0), the finite volume
effects are dominated by the infrared cutoff on the Dirac eigenvalues presented by the volume.
Thermodynamics is recovered whenV > 5. We show the effects of this crossover in the second
panel of Figure 4. In the large volume portion one may use standard (thermodynamic) finite size
scaling analysis (using the expected Ising exponents) to continue the results to infinite volume.

Our final result on the CEP are displayed in Figure 5. Also shown for comparison is an older
evaluation of this point by a different method inNf = 2+ 1 QCD with the same pion mass and a
volumeV ≤ 3.9 [7] (other approaches include [8, 9, 10, 11]). Since our results at the comparable
volumes agree with this evaluation, we believe that the discrepancy cannot be attributed to the
difference in the flavour content of the sea. Also shown for comparison is the freezeout curve in
heavy-ion collisions. It seems that the CEP may be observed in energy scans at the RHIC.
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