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1. Finding the CEP by Taylor Expansion

In QCD with two flavours of quarks, the pressure and its Taglgransion are

T M g
P(T7“U7ud) = (\_/> IOgZ(Tvuwud) = P(T707 O) + Z Xnu-,nd nLLj| % (11)
NuNg |

whereT is the temperaturgy, 4, the chemical potentials for each flavour (since weak ictéas

are neglected, flavours are exactly conservéd)the volume,Z, the partition function, and the
Taylor expansion is around, = tg = 0. The Taylor coefficients are called quark number suscepti-
bilities (QNS). The coefficients of order higher than 2 weabed non-linear susceptibilities (NLS)

in [1]. Most lattice computations are performed in the flaveymmetric limit,m, = my, which
forces the coefficients to have the symmetiy, = Xmn. Also, CP symmetry forcegnn—n =0
wheneve is odd.

We are interested in the critical end point in the plan& @ind the baryon chemical potential
Us = 3y = 3Ug. The second derivative

0P
T.Us) = 5>
Xeo(T: He) = 5.2 —

(1.2)
diverges at the critical point in the thermodynamic limit.e\8bnstruct the Taylor series for this
QNS from (1.1). In [2] we extract the Taylor coefficients (T, ug) from lattice simulations
in order to estimate the CEP. Note that we scan along linesmdtantT. At the CEP the Taylor
expansion in (1.2) would break down. Hence, the radius of@gence of the series, in the ther-
modynamic limit, would give the position of the CEP providédt there is no other critical point
nearer tou, = Ly = 0.

Our analysis involves examination of finite volume effeotgdo(T, ug). On any finite volume,
as one scans along a line of const@inbne sees a peak in the QNS. With increasing volume one
sees larger and sharper peaks, which go smoothly into thamalytic divergence in the thermo-
dynamic limit. This implies an interesting behaviour foe thaylor coefficients on finite volumes.
Estimates of the radius of convergence from terms up to soder N.(V) should indicate a finite
value; but terms of order greater th&(V) would show a growth in the radius of convergence.
With increasingv one should observid. (V) to be increasing. Estimates of the radius of conver-
gence have to be performed, perforce, at fikiteand therefore only the estimates for orders less
thanN.(V) should be used, and continued to the thermodynamic limitgustandard finite size
scaling methods.

The main systematic errors in the location of CEP by lattiethods are due to three sources—
lattice spacing effects, finite volume effects, quark mdfces. In this work we show that finite
volume effects can be controlled wheh= m,;V/3 > 5. By working in the large volume region
and taking small quark masses such thafm, = 0.3 (close to the physical value) we are able to
control the last two sources of errors simultaneously ferfitst time. Lattice spacing errors will
be considered later. Our simulation parameters are list2].i We expand® to 8th order inug.
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Figure 1: The distribution of estimators of the traces involved in Xg) and (b) x11 on one configuration

at 0.8T; by Gaussian distributed noise vectors. The different bistms in each case are labeled by the
number of vectors used to make one measurement. Noise ingagurement gf1; arises from the signifi-
cantly larger spread of the second (highly non-Gaussiatdduiam with a much smaller mean, and therefore
requires many more vectors to control.

2. Optimizing the computations

Every derivative of log with respect tou lands on the Dirac determinant, since this is the
part of the measure which contaips Every derivative of the determinant of a matrix creates an
inverse power of the matrixj.e., a quark propagator in this example. Thus, when Taylor serie
are examined at ordét, they may contain terms containing upNopropagators. On every gauge
configuration one is therefore required to construct femtiaces with many propagators, implying
a need for multiple Dirac matrix inversions. The way to optienthe number of inversions is to
map this problem on to a computer science problem called$heirfer problem” [3]. Details are
given in [2].

Fermion traces are obtained using the usual stochasticogketirandom vectors are drawn
from some ensemble (usually GaussiarZgy, the expectation of the operator is found on each
vector and the average is found over the noise ensemble.m{2ation involves choosing the
ensemble and the number of vectors. We found that for thisifsppurpose the Gaussian ensemble
is superior to th&Z, noise ensemble. The number of vectors needed increasetheitrder, and
at each order Fermion-line-disconnected operators require vectors than connected operators.

Since multiple matrix inversions are required to on eaclggawnfigurations, one may expect
a priori that some preconditioning or reuse of vectors mayrove the performance of the inverter.
However, it turns out that the extra arithmetic effort irwexd in this is comparatively large, and
leads to gains of around 10% (with a less sparse Dirac opgrate., with improved actions,
there may be more gain). We therefore did not optimize thergion in this manner. The main
optimization of the CG inverter was to tune the stoppingeciain.

We measured the autocorrelations of the Wilson line and tlekgcondensate during the
R-algorithm run, and chose to analyze only one configurgtiemautocorrelation time, gathering
statistics of 50-100 configuration at each coupling on eladtice size. Since autocorrelations are
large in the vicinity of the QCD crossover temperatuig,it took massive computational effort to
generate sufficient statistics in this interesting regifime effort required in the measurements was
significantly smaller.
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Figure 2: The first panel shows the ratja 1/ x20 as a function off /Tc. The second shows the scaled value
of x20 from our computation (see text for details) compared to &ata [5] and quenched QCD [6].

3. Non-linear susceptibilities

Different systematics are seen for non-linear suscepitisil(NLS) in the three regions, well
below T, nearT; and well aboveTl; [4]. An example is provided by the ratigi1/x20 which
measures the importance of sign fluctuations in the partfiimction at small chemical potential.
This is of order unity at @5T., and decreases rapidly in the region n&garbecoming of the
order of 103 at largeT (see Figure 2).x20 itself crosses over from a small value beldwto
a much larger values abovg. In Figure 2 the value shown is the observed value scaled by a
factor which would transform measurements)@f in the quenched theory at the same lattice
spacing into the continuum. We have argued before that tiisedure is within 5—10% of the
true continuum limit. Taking into consideration this urte@mty, and differences in quark masses
and lattice volumes, the values are in agreement withNthe 8 computations with improved
staggered quarks of [5].

Well aboveT, there is a hierarchy of values of the NLS which is consistetit weak-coupling
power counting rules. In the vicinity of. these rules break down, and some of the NLS peak.
These peaks are found to be due to one particular class aitopgrwhich measure fluctuations of
the fermion-line-connected operatar;, contributing tox»g [4].

4. The CEP

Given the Taylor expansion of an even functibfx) = 5, f2»x*" around the symmetric point
x = 0, one may define the radius of convergence,n several equivalent ways. Two definitions
which we use here are the limits of the successive approxsnan

f 1/2n
Pon = ‘f_o
2n

f2n
foni2

or o= (4.2)

The results fory,o(Us) evaluated on two different volumes are shown in Figure B at 0.95T..
Note that the volume effects are compatible with the expiects discussed in Section 1.

One important question is whether the series diverges fbnggor imaginarypg. If it is the
first possibility which is realized, then all terms in theissrshould be positive; if the second, then
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Figure 3: The two estimators of the radius of convergence of the séieg,o(Ls)— (a) p2n and (b)ran.
The nature of the finite volume effects are clear.
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Figure4: The first panel shows the Taylor coefficients@p at orders 0, 2 and 4 as a functionTofTc. The
second shows; andrg atT = 0.95; as a function o¥//3 and .

11

[ \* ]
=] +
0.9t g

0.8+

TITc

Freezeout curve

0.7

ug/T

Figure 5: Our evaluation of the critical end point for QCD in the thedgoamic limit compared to an
earlier evaluation [7]. Also shown is the freezeout curvéa@avy-ion collisions with the center of mass
energy marked. It seems that energy scans at RHIC may seesitig physics.
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the series should alternate. We find that all the terms aritiygog the range @ < T /T, < 1,
within which the CEP is located (see the first panel of Figyrénlicating that the first possibility
is actually realized. FdN; = 2 the only other nearby critical point is that@t/T. = m;/T. = 1.6
for T = 0. This is further away from the origin than the critical poidentified by the radius of
convergence. Hence we conclude that the radius of conveggdantifies the CEP.

Finite size effects are of two kinds. At small volumdsg., when?” < 5 (in this formula the
appropriate value aiy to use is that measured in very large volumes at 0), the finite volume
effects are dominated by the infrared cutoff on the Dira@eiglues presented by the volume.
Thermodynamics is recovered wheh> 5. We show the effects of this crossover in the second
panel of Figure 4. In the large volume portion one may usedstah(thermodynamic) finite size
scaling analysis (using the expected Ising exponents)rbrage the results to infinite volume.

Our final result on the CEP are displayed in Figure 5. Also shfmsw comparison is an older
evaluation of this point by a different methody = 2+ 1 QCD with the same pion mass and a
volume ¥ < 3.9 [7] (other approaches include [8, 9, 10, 11]). Since owiltesat the comparable
volumes agree with this evaluation, we believe that therdamncy cannot be attributed to the
difference in the flavour content of the sea. Also shown fonparison is the freezeout curve in
heavy-ion collisions. It seems that the CEP may be observedérgy scans at the RHIC.
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