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1. Introduction

Direct lattice simulations at non-zero chemical potential are possible only along certain sub-
spaces of the full parameter space, such as Re µ f = 0 or µu = −µd . However, Taylor expansions
around µ f = 0 have proved to be useful in studying the physics for general µ f . Here we discuss
the two flavour case f ∈ {u,d} and with degenerate quark masses mu = md = m. We shall freely
go from the parameter space expressed in terms of µu and µd to the isoscalar µ0 = (µu + µd)/2 and
the isovector µ3 = (µu− µd)/2 chemical potentials. These are simply related to the baryon and
electric charge chemical potentials. Since we perform Taylor expansions around the point µ f = 0,
all expectation values are computable by the standard methods of lattice gauge theory.

Various operators related to chiral dynamics in QCD are connected among themselves via
chiral Ward identities and Maxwell relations, such that there are only few independent Taylor
coefficients. For us the three independent parameters of interest in the chiral sector are the single
linear response coefficient of the chiral condensate to µ , and two quadratic response coefficients
(QRCs). The linear coefficient vanishes by symmetry in an expansion around µ = 0. Thus, the two
chiral QRCs encapsulate the physics arising from the influence of baryon dynamics due to µ 6= 0
on chiral fluctuations.

2. Taylor Expansion

2.1 Chiral condensate

Here we consider only the isoscalar condensate CS(m,T,µu,µd) = 1
2

[
〈uu〉+ 〈dd〉

]
, which can

also be written as, CS(m,T,µu,µd) = 1
2V4

(
∂ logZ
∂mu

+ ∂ logZ
∂md

)∣∣∣
mu=md=m

where V4 is the 4-volume of the

lattice. In our present computations the volumes are taken large enough, but with non-zero quark
masses. Since we work with staggered quarks, the mass renormalization is multiplicative, and so
are the renormalization of the condensate and its Taylor coefficients. We are interested only on the
variation of the condensate with µ at constant T , so we simply work with either of the ratios

CS(mR,T,µu,µd ;a)

CS(mR,0,0,0;a)
(Z scheme) or

CS(mR,T,µu,µd ;a)

CS(mR,T,0,0;a)
(T scheme). (2.1)

The computations have to be performed at fixed renormalized mass mR. One expects the T scheme
to be undefined for T > Tc when mR = 0, since the chiral condensate then vanishes. We perform a
formal expansion here which will later be renormalized in either of these schemes.

CS(m,T,µ0) = C0
S +
(
C20

S +C11
S
) µ2

0
2

+ · · ·

CS(m,T,µ3) = C0
S +
(
C20

S −C11
S
) µ2

3
2

+ · · · (2.2)

where C20
S and C11

S are respectively the diagonal and off-diagonal coefficients.

2.2 Chiral Ward identities

Chiral Ward identities are consequences of certain operator equalities which follow from chi-
ral symmetries. The prototypical chiral Ward identity is CS(T,µ) = mχπ(T,µ), where χπ is the
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pseudo-scalar susceptibility. Taylor expansions of both sides of this identity can then be equated
term by term. A second chiral Ward identity [1] relates the isovector scalar susceptibility to the
mass derivative of the condensate: ∂CS/∂m =−χε .

We show later that in the continuum limit of the high temperature phase the second derivatives
of the condensate with respect to the chemical potential vanish. As a result, the the pion suscep-
tibilities are insensitive to chemical potential. Also, in this phase, symmetry arguments show that
χπ = χε [2]. As a result, the scalar susceptibility is also independent of the isoscalar chemical
potential, at least to quadratic order. Below Tc this chain of logic does not hold. The scalar suscep-
tibility is interesting because of speculation about the massless modes at the critical end point [3].
We will discuss it at greater length elsewhere.

2.3 Maxwell relations

A Maxwell relation is the equality of two distinct physical interpretations of a mixed deriva-
tive obtained by interchanging the order of the derivatives. From the Taylor expansion of the chiral
condensate in eq. (2.2) we can find Maxwell relations with the change of quark number suscepti-
bilities (QNS) with the quark mass. The leading order relation ∂CS

∂ µ = ∂n
∂m was first noted in [4]. It is

trivially true at µ = 0 since the first derivative on the left vanishes, as does n for all quark masses.
The second derivatives give two non-trivial Maxwell relations and consequent relations using the
chiral Ward identities discussed earlier,

C20
S =

∂ 2CS

∂ µ2
u

= m
∂ 2χπ

∂ µ2
u

=
∂ χuu

∂m
,

C11
S =

∂ 2CS

∂ µu∂ µd
= m

∂ 2χπ

∂ µu∂ µd
=

∂ χud

∂m
. (2.3)

Here, as a byproduct of our computation of the renormalized chiral condensate, we shall give the
continuum limit of the derivative of the susceptibility. Also, the relative rates of strange and light
quark production in heavy-ion collisions i.e. the Wroblewski parameter on the lattice [5] is

λs =
χss

χuu
, (2.4)

with obvious extensions to the production rates of heavier quarks. Since it is hard to perform lattice
computations at realistic values of light quark masses due to constraints of computer time, one can
lighten the computational burden by using a Taylor series for the mass dependence of the suscep-
tibilities utilizing the above Maxwell relation. Then one can compute λs at some reasonably light
quark mass, corresponding to, say, the pion mass being two to three times heavier than in the real
world, and extrapolate to the physical quark mass values using the Maxwell relation. Extrapolating
the results of our measurements at heavier quark masses to the realistic values we find the change
in λs < 1%.

3. Results

3.1 Continuum limit in quenched QCD

3.1.1 T > Tc

We used stored gauge configurations from the study in [6] for our measurements. These were
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obtained on Nt = 4,8,10,12 and 14 lattices for temperatures T = 1.5Tc,2Tc and 3Tc respectively.
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Figure 1: The diagonal QRC in the T scheme, at fixed
T/Tc = 1.5 holding the renormalized quark mass fixed
by fixing the bare mass to be m/Tc = 0.1. The lines
show the continuum extrapolation.

The diagonal QRC in the T scheme is shown in Figure 1. It is clear that there is significant
µ-dependence on coarser lattices. However, this Taylor coefficient vanishes at the 99% confidence
limit on extrapolation to the continuum. The identities in eq. (2.3) then imply that χuu is insensitive
to changes in the quark mass and χπ is insensitive to µ in this range of temperatures. Since χuu

agrees with a perturbative evaluation for T ≥ 1.5Tc, its insensitivity to m can be understood from
the fact that the effective infrared cutoff is given by the Matsubara frequency πT and not by m
when m/Tc < πT/Tc.

3.1.2 T < Tc

We also made a series of simulations at fixed T/Tc = 0.75 for Nt = 6, 8, 10 and 12 in quenched
QCD with the Wilson action. We found that the continuum limit of both 〈O2〉 and 〈O11〉 were
consistent with zero within reasonably small errors. However, note that at coarser lattices the
values were increasing with increasing temperature, but below Tc the behaviour is reversed. We
then do a dynamical simulation near Tc to investigate this further.

3.2 Dynamical staggered quarks

We give the results of a series of computations with two flavours of dynamical quarks as the
temperature varies between 0.75Tc and 2Tc. The simulations were performed using the R-algorithm
with two flavours of quarks with bare mass of 0.1Tc. Three lattice sizes were used in most of the
simulations, namely 4×83, 4×123 and 4×163. Lattice computations with dynamical quarks are
still too costly for the continuum limit to be taken easily. However, in order to have some idea
of the continuum limit we have also performed two further simulations with 6× 123 and 8× 163

lattices at T = 0.9Tc. In addition, we have results at Tc on 6×123 lattices.
Consistent with our previous observations, C1

S was seen to vanish with small errors across the
full range of temperatures considered. The diagonal QRC was negative and differed significantly
from zero, as shown in Figure 2. Eq. (2.3) then implies the supression of pion fluctuations and
increase in pion mass as one approches the critical end point. Note a small shift of the peak from
Tc. This may be an indicator of a crossover transition. For comparison, results from the quenched
theory at the same bare quark mass are also shown. The T -dependence is seen to be a little different;
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Figure 2: The diagonal QRC as a function of the tem-
perature for a = 1/4T . Pluses denote results obtained
on 4× 83 lattices, pentagons on 4× 123 and circles
on 4× 163. The boxes represent the quenched QCD
value.
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Figure 3: The continuum extrapolation of the diagonal
QRC. The circles denote data for T = 0.9Tc, and the 3-
σ band for the continuum extrapolation is shown. The
boxes represent data at Tc, and the 1-σ (nearer arrows)
and 3-σ (further arrows) limits of the extrapolation are
shown.

this could reflect either the difference in the value of mπ/mρ or be a quenching artifact. The off-
diagonal QRC was consistent with zero within small errors above Tc. Near and below Tc larger
fluctuations are seen. Although still consistent with zero at the 3-σ level, the averages increase
by several orders of magnitude compared to T > Tc, and seem to be comparable in magnitude to
the diagonal QRC. Reduction of the noise in measurement is required to get a clearer signal. Any
non-zero value of C11

S would imply an assymetry of the phase diagram in the µ0 and µ3 directions
(see eq. 2.2)

The results of our preliminary investigation of the continuum limit with dynamical quarks
are shown in Figure 3. At 0.9Tc the 3-σ error band on the extrapolation of the diagonal QRC is
consistent with zero. At Tc the continuum extrapolation perforce had to be performed with data
from only two lattice spacings. With this caveat, our data currently points to a non-zero continuum
extrapolation of renormalized C20

S at Tc.
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