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1. Introduction

The last few years have seen remarkable progress in the numericalaft@CD at finite
chemical potentiali. Still, the various methods [1, 2, 3, 4] suffer from systematic uncertainties,
which limit their range of reliability to abou!# < 1.0. For arecent review, see Ref. [5]. We try to
address this apparent limitation by using a canonical approach [6, &lewve focus on the matter
densityp, rather than the chemical potential. The method is particularly appropriatplurefew-
nucleon systems at low temperature, and in principle, allows to study the lmyknies of nuclear
matter and the nuclear interactions. Here, we extend its use and determirfeatieelwundary
between the confined phase and the quark gluon plasma, as illustrated in Fig.1
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Figure 1: Sketch of the conjectured QCD phase diagram in the grandnézad and canonical formalism.

The left figure shows a sketch of the conjectured phase diagram of iQ@i2 T-u plane.
At small chemical potential, the phase transition is a rapid crossover, whid$ ia a second
order endpoint, followed by a first order transition. Correspondirtlyright figure illustrates the
transition in theT - p plane. The first order transition is manifested in a co-existence region. In
this proceedings, we describe how we identify the co-existence regibh@m we determine the
phase diagram in thé-u as well as in thd -p plane.

2. Partition Functions

We construct the canonical partition functida(T,Q) by fixing the number of quarkil =
[A3RP(X) yo Y(X) to Q. We insert a-function in the grand canonical partition functidge(T, i)

Ze(T,Q) = [ [DU]DW][DY] e SUTHSLE¥THS (R - Q) . (2.1)
The d-function admits a Fourier representatiér@N — Q) = [dy gl (N-Q) We recognisey =
i T as animaginary chemical potential and exploit%@%—periodicity [Blinp of Zge(T, u=im)

3 (3 i L — 1 /7 - .
Zc(T,Q) = Z_[/Jdﬂl e MZae(T,imT) - ET/fnd (%) e B Zeo(T,im) . (2.2)

Thus, the canonical partition functions are the coefficients of the Faaxansion in imaginary
of the grand canonical partition function. As a consequence o?—’g'llq)eriodicity, the canonical
partition functions are zero for non-integer baryon nuniber Q/3.

From the canonical partition functions, the grand canonical partitiontiimcan be recon-
structed using the fugacity expansion (in fact a Laplace transformation)

Zee(T.) =, [ _dpe¥?ize(Tp)= [ dpe¥iTor-am @23)
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with the baryon densitp = \% and the Helmholtz free energy densityT,p) = —\T/ logZc(T,p).
The relation between baryon density and chemical potential can be segrasp) (i) or u(p):

10f(p)

(P)(H) = 3 dp

/dppeWPTchp) o ulp)= (2.4)

ZGCTIJ

While the first expression is exact in any volume, the second is obtainedsei@ddde point approx-
imation (exact in the thermodynamic limit) and may have more than one solution wivargsfor
the baryon density at a given chemical potential, see Fig.3. We discussstiesinsdetail below.

3. Method

Following [9], we express the canonical partition function in a ratio, whimh loe measured
by Monte Carlo simulation as an expectation value:

Zc(B,B) _ 1 —S,[UiBo] I izt detUsip)

Zoc(Bo =B, H=1iHi,) Zec(Bo,iub)/[Dw detUsitho) 77 / © det(U;iu,)
1 W isgl det(U; i) - ZC(U,B)

<271/ d (T) e detU; |u|0)>ﬁ°'“'o - <det(U;i[,l|O)>B°>i“'o

where Zgc(Bo,iM,) is the grand canonical partition function sampled by ordinary Monte Carlo
methods, here for notational simplicity 8 = 3. The ZC(U ;B)’s are the Fourier coefficients of
the fermion determinant for a given configuratigu}. Although the average in Eq.(3.1) should be
real positive, the individual measurements are complex, with a sometimetsvaegal part. This

is how the sign problem manifests itself in our approach. Moreover, a keledimate depends
on a good overlap of our Monte Carlo ensemble with the canonical SBetbtemperaturg. We
address this issue by following the idea of Ref. [1] and including both gedfand deconfined
configurations in our ensemble. Indeed, we supplement the ensen{ifig at= 0), u = 0) with
additional critical ensembles at imaginary chemical potential, non-zeroiilsobpmical poten-
tial, and ensembles generated with an asymmetric Dirac coupling [4] - in prinaipfeensemble
is allowed. We then combine all this information about a particular canonicttiga function

Z:(B, B) by Ferrenberg-Swendsen reweighting [10].

The Fourier-coefficients of the determinzﬁa(u ; Q) are calculated exactly [9]. In the tempo-
ral gauge U4(x,t) = 1 except fort = N; — 1), the staggered fermion mati in the presence of a
chemical potential can be written in the form

(3.1)

Bo 1.0 .. 0 U jeHaN

-1 B, 1 0 .. 0 N1g g
M= 0 1B, 1 0 — P= (J > Un-1+
—UM_le“aN 0O .. 0-1 Bn—1

where theB;’s contain all space-like contributions. Ref. [11] showed that the detamhican be
computed for any chemical potential at the cost of diagonalising the sa¢etiéuced matrix'P.
The determinant is given in terms B eigenvalued, ..., Agy, WhereV is the spatial volume:

eV
detM(U; u) = e Halt |‘l()\ i +e Hal) Z Zc(U;Q)e QHaN (3.2)
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Matching term by term, we then solve for the Fourier coefficiei?a.le;Q). This delicate step
requires a special multi-precision library. The diagonalisation of the estioatrixP is computa-
tionally intensive and take§'(V?3) operations.

4. Results

We study the Helmholtz free enerdy(B) = —T Iog% in a theory of four degenerate
flavours of staggered quarks with masa= 0.05 (¥ = 0.2, m; ~ 350 MeV) on a small x4
lattice with volume~ (1.8fm)3. For the quark mass we chose, the phase transition is first order at
u =0, and presumably remains first order for all chemical potentials.

We “scan” the phase diagram by varying the baryon density at fixed taope, see Fig.2.

We measur@% and assume the validity of the saddle point approximation to equate this
quantity with@ following Eq. (2.4). This assumption will be tested in Fig.3.

p/T3
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Figure 2. (left) A sketch of the “scans” in our phase diagram. (righteTderivative of the free energy at

fixed temperature as a function of the baryon number (bargmsity). In the saddle point approximation,

they-axis is§ = F(B)-F(B-1)

T/Tg=0.89 ——
T/Te=0.92 s
T/Tg=0.95 s
TTe=0.98 —a— |

(F(B)-F(B-1))/3T
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Note that accurate results are obtained, up to high densiti€s lfaryons/fm) and large
chemical potentials ~ 2). The first order phase transition and the associated metastabilities
are clearly visible in the “S-shape” (#‘(B). The low-density regime can be reasonably well de-
scribed by a simple hadron resonance gas An%tt, 3f(T)sinh(3%) with f(T) as the only free
parameter. The high-density regime almost corresponds to a gas of fmmquark% =
N (5)+ % (#)3 when taking cut-off corrections [12] into account. The solid line in Fig.2@ig
is obtained by fitting the linear and cubic terms in this expression. Instead bkthgalue 1, the
fitted coefficients are.82(2) and 194(6) respectively. Thus, the equation of state for the quarks in
the plasma phase differs little from the Stefan-Boltzmann law. This has besenveld also in [13]
and [14]. Note that we find the sanfg(#) dependence in the plasma phase at all temperatures.

For a given temperatur€, we identify the boundarieg; andp, of the co-existence region
and the critical chemical potentiagl as follows. Equality of the free energy densities in the two
phasesf (p1) —3up1 = f(p2) — 3up,, implies

ppzdpu'(p) ~3u)=0. (4.1)

Sincef’(p) is the quantity measured in Fig.2, we determgago, andu by a “Maxwell construc-
tion” illustrated in Fig.3 (left) for the temperatung =0.92. The value of% defining the horizontal
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line is adjusted to make the areas of the two “bumps” in the S-shape eduad.two outermost
crossing points definp; andp,, the boundaries of the co-existence region. Hére:, 1.06(2) is
the value of the critical chemical potential.

3

p/T
0 1 2 3 4 5 <B>(W) vs p(B)
Py ) 0, ) 30 T T, =0.92 —s—
14t 3 25 Fugacity expansion —sx— 18
17
§ 12t T 20| {6
< g 150
(S S 15t =
T 5 142
o >
g 08t 3 10 f 13
5 12
06 k T/Te=0.92 —x— | 11
WT=1.06(2) ——
L L L L . H L L 0 L L 0
0 2 4 6 8 10 12 14 16 0 0.5 1 1.5 2
Baryon number wT

Figure 3: (left) The Maxwell construction allows to extract the arél chemical potential and the bound-
aries of the co-existence region. (right) Comparing thelkagdoint approximation (red) with the fugacity
expansion (blue). Strong finite-size effects in the lattesaure the first-order transition.

We can cross-check this result by making use of the fugacity expansjdB.&), see Fig.3
(right). For a given chemical potential, we measure the baryon nu@éu). We see a jump at
the same valu# ~ 1.06, but the rounding due to finite size effects is very strong. In contrast,
criterion for criticality (equality of the free energies) has exponentially suwdllme corrections.

In Fig.4 we present the phase diagrams inTthg as well as in thd -p plane. On the left, we
summarise results from various methods, all for the same theory: 4 flawbataggered quarks
with am= 0.05, N; = 4 time-slices; only the spatial volume varies as indicated. We have repeated
(blue) the study of [1] (green), using multi-parameter reweighting on aserable generated at
(B, 4 = 0). We identify the phase transition via the peak of the specific heat insteadesf L
Yang zeroes, and obtain consistent results. However, the “sign prtbdimmatically grows with
increasing chemical potential, as shown by the average sign in the figoreoWr, our statistical
error, based on jackknife bins as in [1], does not reflect the trueimacy.

The parabolic fit [3] is consistent with the black points [4]. Both method&p@ran analytic
continuation from imaginary, for which the systematic errors are hard to quantify. Our new
results are shown in red. There is no strong inconsistency with othdtsidsut we observe a clear
sign of bending down starting #’[ ~ 1.3. In fact this must happen, if the critical line is to reach
the valueau, = 0.35 atf3 = 0, predicted from a strong coupling analysis [15]. In Th@ plane,
the densities at the boundaries of the co-existence region seem to remsiiantdorT < 0.85T;
already, withogep = 1.8(3)B/fm* andpcontined= 0.50(5)B/fm?3. The latter is a plausible value for
the nuclear density in our 4-flavoum; = 350 MeV QCD theory.

5. Conclusions

We study QCD in a canonical framework, which is promising for the studyewfriucleon
systems at low temperature, but proves also capable of exploring higitydezgimes (/T < 2)

1The area of each bump gives the free energy required to build tworptreaces. The corresponding interface
tension is\/o ~ 35— 45 MeV.
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Figure 4: (left) The phase diagram in thle-u-plane. (right) The phase diagram in fhep-plane.

at temperature$ > 0.8T.. We have determined the phase boundary between the confined phase
and the quark gluon plasma in both thiep and theT-u plane. In the latter, our results are in
agreement with the literature, however we observe a bending down ofiticaldine at£ ~ 1.3.

The two phases can be rather well described by the hadron resayeshaelow densities and by a
weakly interacting massless gas at high densities.

We thank the Minnesota Supercomputer Institute for computing resources.
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