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In the first part of this contribution we present a numerical study motivated by recent attempts to
understand the nonperturbative aspects of QCD at temperatures T ∼ a few times the deconfine-
ment temperature Tc. We focus on the pure gauge theory, and ask whether the deficit in pressure
and entropy, with respect to their free-gas values, is particular to SU(3). We find that the deficit
in SU(4),SU(8) for T ≤ 2Tc,1.6Tc, respectively, is remarkably close to that of SU(3). This sug-
gests a similar deficit for SU(∞), which is fortunate since this theory is simpler, and can serve to
constrain the possible dynamics underlying the deficits.
In the second part we seek for signs of a Hagedorn temperature TH in pure lattice SU(N) gauge
theories with N = 8,10,12. Since one expects TH > Tc, we measure masses of strings in the
metastable confined phase above Tc, and extrapolate them to zero to estimate TH . For SU(12) we
find that TH/Tc = 1.116(9), when we extrapolate with a critical exponent of the three dimensional
XY model, which seems to be preferred over a mean field exponent by our data.
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1. Bulk thermodynamics of lattice SU(N) gauge theories at large-N

In this section we present a study of bulk thermodynamical properties of SU(4), and SU(8)

pure lattice gauge theories and compare to a study by Boyd et al. of SU(3) [1]. Recent calculations
of various properties of SU(N) gauge theories [2]–[6] have demonstrated that N = 8 is very close to
N = ∞ for most purposes. These also provide information on the critical coupling for various lattice
sizes and N. Thus our calculations should provide us with an accurate picture of what happens to
bulk thermodynamics at N = ∞. For a more detailed version of this section we refer to [7].

1.1 Lattice setup and methodology

We define the gauge theory on a discretised periodic Euclidean four dimensional space-time
with L3

s ×Lt sites, and perform Monte-Carlo simulations of a simple Wilson action. We use the
Kennedy-Pendelton heat bath algorithm for the link updates, followed by five over-relaxations of all
the SU(2) subgroups of SU(N). To evaluate bulk thermodynamics we choose to use the “integral
method” (see for example [1])1 and so the pressure p and interaction measure ∆ are

p/T 4 = 6L4
t

∫ β

β0
dβ ′(〈up〉T −〈up〉0), ∆/T 4 = 6L4

t (〈up(β )〉0 −〈up(β )〉T )× ∂β
∂ log(a(β ))

.

(1.1)
Here 〈up〉T is the plaquette average on a T > 0 lattice with Lt < Ls, while 〈up〉0 is measured on a
lattice with relatively large Lt = Ls. To evaluate the scaling of the temperature T with the coupling
β = 2N/g2, and the derivative in Eq. (1.1), we use calculations of the string tension, σ , in lattice
units (e.g. [4]). Other physical choices to fix the scale differ in modest O(a2) differences. Finally
the value of Tc/

√
σ for the different gauge groups and Lt = 5 in taken from [3, 4].

We performed calculations of 〈up〉T in SU(4) on 1635 lattices and in SU(8) on 835 lattices for
a range of β values corresponding to T/Tc ∈ [0.89,1.98] for SU(4), and to T/Tc ∈ [0.97,1.57] for
SU(8). Since we use Lt = 5, while the data for SU(3) in [1] is for Lt = 4,6,8, we also performed
simulations for SU(3) on 2035 lattices with T/Tc ∈ [1,2]. The measured plaquette averages are
presented in [7].

We performed the ‘T = 0’ calculations of 〈up〉0 on 204 lattices for SU(3), and on 164 lattices
for SU(4), which are known to be effectively at T = 0 [5, 6] for the couplings involved. For SU(8)
however, using 84 lattices would not be adequate for the largest β -values, and we take instead the
SU(8) calculations on larger lattices in [6], and interpolate between the values of β used there with
the ansatz 〈up〉0(β ) = 〈up〉P.T.

0 (β )+ π2

12
G2

Nσ2 (a
√

σ)4 + c4g8 + c5g10, where 〈up〉P.T.
0 (β ) is the lattice

perturbative result to O(g6) from [8] and N = 8. Our best fit has χ2/dof = 0.93 with dof = 2, and
the best fit parameters are c4 = −6.92, c5 = 26.15, and a gluon condensate of G2

Nσ2 = 0.72.

1.2 Finite volume effects

For N = 4,8, one is able to use lattice volumes much smaller than what one needs for SU(3)

(like those in [1]) as the longest correlation length decreases rapidly with N [3, 4]. This is also
theoretically expected, much more generally, as N → ∞. The main remaining concern has to do

1Our lattices are too coarse for the “differential” method, and we found that the Wang-Landau algorithm for the
evaluation of the density of states, did not converge easily for SU(8).
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with tunneling configurations, which occur only at Tc when V → ∞. On our finite volumes, this is
no longer true, and we minimise finite-V corrections by calculating the average plaquettes only in
field configurations that are confining, for T < Tc, or deconfining, for T > Tc. For SU(3), where
the phase transition is only weakly first order, it is not practical to attempt to separate phases. This
will smear the apparent variation of the pressure across Tc in the case of SU(3).

To confirm that our finite volume effects are under control we have compared the SU(8) value
of 〈up(β )〉 as measured in the deconfined phase of the our 83 × 5 lattice with other L3

s × 5 results
from other studies [11], and find that the results are consistent at the 2 sigma level. We perform a
similar check for the confined phase on the same lattices, and again find that finite volume effects
are small, mostly on a one sigma level. The data supporting these checks, together with the checks
related to the next paragraph, is presented in [7].

A similar check for the confined phase on L4 lattices leads to conclude that a size L = 8 in
SU(8) is not large enough, as we find that the plaquette average has a significant change (on a
16 sigma level) from L = 8 to L = 16 for our largest value of β . By contrast, for SU(4) the
finite volume effects seem not to be large on the 164 lattice as we checked for our largest value of
β = 11.30. There the value of the plaquette on a 204 lattice is consistent within ∼ 2.3 sigma with
the value on a 164 lattice.

1.3 Results

In presenting our results for the pressure, we shall normalize to the lattice Stephan-Boltzmann
result given by

(

p/T 4)
free−gas = (N2−1)π2

45 ×RI(Lt). Here RI includes the effects of discretization
errors in the integral method [9, 7]. The same normalisation is applied for the interaction measure
∆, and for the energy density ε = ∆+3p, and entropy density s = (∆+4p)/T .

We present our N = 4 and N = 8 results for p/T 4 in the left plot of Fig. 1. We also show our
calculations of the SU(3) pressure for Lt = 5, as well as the Lt = 6 calculations from [1]. In the
right plot of Fig. 1 we present results for the normalized energy density ε , and normalized entropy
density s. The lines are the SU(3) result of [1] with Lt = 6. Again we see very little dependence on
the gauge group, implying very similar curves for N = ∞. One can clearly infer that the pressure
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Figure 1: The pressure (on the left), and energy and entropy densities (on the right) normalized to the
lattice Stephan-Boltzmann pressure, including the full discretization errors given by RI . In the pressure
plot, the symbols’ vertical sizes are representing the largest error bars (which are received for the highest
temperature). The lines are the SU(3) results and Lt = 6 from [1].
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in the SU(4) and SU(8) cases is remarkably close to that in SU(3) and hence that the well-known
pressure deficit observed in SU(3) is in fact a property of the large-N planar theory. This implies
that the dynamics that drives the deconfined system far from its noninteracting gluon gas limit,
must remain equally important in the N = ∞ planar theory. This is encouraging since that limit is
simpler to approach analytically, for example using gravity duals, and also because it can serve to
constraint and point to important ingredients of analytical approaches (see the discussion in [7]).

2. In search of a Hagedorn transition in SU(N) lattice gauge theories at large-N

In this section we present a calculation of the change in the mass m(T ) of Polyakov loops in
pure lattice SU(N) gauge theories with N = 8,10,12, as the temperature T crosses Tc. At these
large values of N, interactions between singlet objects in the confined phase are suppressed, and a
Hagedorn picture of string proliferation is most attractive. Because the strings proliferate with an
effective zero mass, one expect m(T ) to vanish at the Hagedorn temperature TH > Tc, which we
aim to estimate.

2.1 Methodology and lattice calculation

Although for N ≥ 3 the first order deconfining transition occurs when m(Tc) > 0 (and therefore
Tc < TH), the Hagedorn transition may still be accessible. This is the case since the deconfining
transition is strongly first order at larger N, and one can try to use its metastability to carry out
calculations in the confining phase for T > Tc. The way m(T ) drops with T tells us how does the
curvature of the confining minimum in the effective loop potential vanishes. The simplest possi-
bility is that the point where it vanishes is the spinodal point of the potential, where the confined
vacuum becomes unstable (and where the barrier between the confining and deconfining vacua dis-
appears). It is, however, quite possible that TH does not coincide with the spinodal point, and if the
latter occurs below TH , then it may (but need not) interfere with our determination of TH . This is
a significant ambiguity that we cannot resolve in the present calculations but the reader should be
aware of its existence.

We therefore begin deep in the confined phase and increase T to T > Tc, calculating the de-
crease in m(T ), and extrapolating to m = 0. We interpret the result of the extrapolation as the
Hagedorn temperature, TH . Nevertheless, since we work with finite values of N and volume V ,
tunneling probably occurs somewhere below TH . These tunneling effects and the fact that as m(T )

decreases, finite volume effects become important, can make an apriori fit for the critical exponents
unreliable. As a result we first perform fits where we fix the functional behaviour of the temporal
loop mass to be m(T ) = A · (TH/Tc −T/Tc)

ν , where ν = 0.6715(3) corresponding to three dimen-
sional XY model (3DXY) or ν = 0.5 corresponding to mean field. In addition we also perform fits
where the exponent ν is a free parameter, constrained to be positive and smaller than one.

Our lattice calculations practicalities are the same as those in Section 1. We work with Lt = 5,
and Ls = 12. In addition, every five sweeps, we measure the correlations functions of improved
operators for Polyakov lines. The masses are extracted with a variational technique, and the re-
sults are given in [11], where the full detailed description of our lattice study (including statistics,
thermalization details, choices of initial configuration, monte-carlo results, etc.) is given as well.
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The physical scale was fixed using the interpolation for the string tension given in [4] in the
case of SU(8). For N = 10,12 we extrapolate the parameters of the scaling function of [4] in 1/N 2

from their values at N = 6,8. In addition we measured the string tension for N = 10 at β = 68.80
on an 84 lattice, and for N = 12 at β = 99.2,100.0, on an 84, and a 104 lattice respectively. We find
that the measured values deviate at most by 1.6 sigma from the calculated ones.

Finally, to check the effect of finite volume corrections, we perform several additional calcu-
lations of the correlation lengths for SU(10) with Ls = 14, and for SU(12) with Ls = 16. We find
that the finite volume effects of the extracted masses are quite small, and are at most on the level of
1.9 sigma (and mostly lower than that, see [11]). Comparing with the situation close to the second
order phase transition of the SU(2) group [4], we find that for N = 2, finite volume effects are
much more important than for N = 12, which is consistent with standard theoretical arguments that
predict smaller volume corrections for gauge theories with larger values of N.

We estimated T/Tc by (a
√

σ)c

a
√

σ , where (a
√

σ)c is the value of a
√

σ at β = βc on an Lt = 5
lattice2. The latter we extract from Tc/

√
σ , which is 0.5819(41) for N = 8. The corresponding value

for the N = 10,12 is found by extrapolating in 1/N2 according to measured values of Tc/
√

σ(Lt =

5) for N = 4,6,8. This gives 0.5758 for SU(10) and 0.5735 for SU(12), with an error of about 1%.

2.2 Results

Here we focus only on the results of the SU(12) study. We choose to plot the effective string
tension σeff(T ) ≡ m(T )T , in units of the zero temperature string tension σ0, in Fig. 2.
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Figure 2: Effective string tension for SU(12) obtained in units of the zero temperature string tension.
We find that the fits have a rather good χ2/dof = 0.30,0.50 when fitting with ν = 0.6715,0.5,

and give TH/Tc = 1.116(9)−1.092(6), respectively. The result of the fit with ν as a free parameter
is νfree = 0.69, and TH/Tc = 1.119, with χ2/dof = 0.37 (the error here is correlated with the error
of ν and A. (For the iso-surfaces that correspond to confidence levels see [11]). With this weak
preference of ν = 0.6715 we cannot unambiguously determine the exponent ν (the error on νfree is
quite large, which can be seen from the goodness of all these three fits). Nonetheless, in the case
of SU(10) we find a stronger preference for ν = 0.6715, see [11].

The limited statistics prevent us from making statements about the function TH(N). This is
unfortunate, since it is of interest to know how far is TH/Tc from 1 at N = ∞. Nevertheless for

2This assumes that Tc/
√

σ varies at most very weakly with a(β ), which is in fact what one observes [4].
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N = 8,10,12 we obtain fitted values of TH/
√

σ ' 0.62− 0.68, which is lower than Tc/
√

σ ' 0.7
of SU(2) where the phase transition is second order, and therefore may be Hagedorn, Tc = TH , or
provides a lower bound on TH . Nonetheless, when we plot the effective string tension for N = 10,12
as a function of T/

√
σ we find that they are quite similar, but differ from the plot of σeff(T ) of

N = 2, which may question the identification of deconfinement at N = 2 with a Hagedorn transition.
Finally, an additional outcome of this work is to confirm that at T = Tc the mass of the timelike flux
loop that couples to Polyakov loops is far from zero at large-N (σeff/σ0 ' 0.5 for N = 8,10,12, as
seen in Fig. 2 here and in [11]), which confirms that the transition is indeed strongly first-order.
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