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1. Introduction

Forces among infinitely heavy quarks separated by distancer are of significance both atT =

0 and when they are surrounded by an interacting medium. This paper is an extension of [1],
where a reweighting technique was used to compute the grand canonical potential of aqq̄ pair
surrounded by a medium of finite chemical potentialµ along the transition line. In this work two
other temperatures, one above and one below the transition temperature, willbe examined. All
simulations were carried out for 2+1 flavours with physical quark massesalong a line of constant
physics (LCP).

2. Line of constant physics

As we want to perform all our finite temperature simulations on lattices of size 4×123, we
have to control the temperatureT = 1/(4a) by the lattice spacinga. But on changinga it is also
necessary to tune the mass parameters ˆmu,d andm̂s accordingly, where the hat denotes the quantities
in lattice units. To determine this so called line of constant physics, we carried out zero temperature
simulations for several values of the gauge couplingβ and of the mass parameters (see Table 1).
We used 2+ 1 flavours with dynamical staggered fermions. A few hundred configurations were
generated for each parameter set using the R-algorithm and setting the microcanonical stepsize to
half of the light quark mass. We measured ˆmπ , m̂ρ , m̂K , r̂0 andσ̂ at 3 quark masses for eachβ in

β m̂u,d m̂s

5.09 0.020, 0.040, 0.060 0.250

5.16 0.020, 0.040, 0.060 0.250

5.19 0.020, 0.040, 0.060 0.250

5.32 0.010, 0.020, 0.030 0.168

5.42 0.010, 0.020, 0.030 0.126

5.50 0.008, 0.016, 0.024 0.100

5.57 0.008, 0.016, 0.024 0.100

Table 1: Parameters used for the zero temperature simulations.

order to extrapolate to physical masses. The lattice sizes ranged from 24×123 for coarse lattices
over 32× 163 to 48× 243 for finer lattices, so that even for the lightest quark massesmπ L > 4,
whereL is the spatial extent of the lattice. The ratiomπ/mρ was set to its physical value (0.179) in
order to fixm̂u,d as a function ofβ andmπ/mK was set to its physical value (0.278) to determine
m̂u,d/m̂s. The values of ˆmud andm̂s as the function ofβ are shown in Figure 1. A weighted average
of m̂ρ , r̂0 andσ̂ was used to set the scale (Figure 2). We extrapolated the ratio of the strange and
light quark masses to the continuum limit (assumingO(a2) scaling) and got

ms

mu,d
= 24.2(7) , (2.1)

which is in agreement with chiral perturbation theory [2]. A similar line of constant physics using
3 flavours is presented in [3].
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Figure 1: 20m̂u,d andm̂s as a function ofβ so
that themπ/mρ andmπ/mK are kept constant.
The black points denote the parameters used
in the finite temperature simulations.
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Figure 2: The scale 1/a as a function ofβ .
The black points denote the parameters used
in the finite temperature simulations.

3. Reweighting technique

As the fermion determinant is no longer positive for non-zero chemical potential any kind
of importance sampling is hindered. We used the overlap-improving multiparameter reweighting
technique [4]. The expectation value of an operatorO at non-vanishing chemical potential can be
rewritten as the ratio of two expectation values atµ0 = 0, where importance sampling can be used
to generate the configurations.

〈O〉µ,β =

∫

dU O ω
∫

dU ω
=

∫

dU O ω ′ [detM(µ0)]
nf /4e−Sg(β0)

∫

dU ω ′ [detM(µ0)]nf /4e−Sg(β0)
=

〈O ω ′〉µ0,β0

〈ω ′〉µ0,β0

, (3.1)

where ω = [detM(µ)]nf /4e−Sg(β ) , ω ′ =
[detM(µ)]nf /4e−Sg(β )

[detM(µ0)]nf /4e−Sg(β0)
.

The details of the determinant evaluation can be found in [5]. As shown by eq. (3.1) a reweight-
ing in other parameters likeβ is also possible and it has the advantage that it can maximize the
overlap or trace out the phase transition line. There are however two limitations to the reweighting
approach. First the overlap between the sample generated atµ = 0 and the target sample atµ 6= 0
decreases with growingµ. One can define a quantity which describes the overlap in several ways
[6]. In this work it is defined as the ratio of the number of configurations in two different samples
#(set′)/#(set). Here (set) marks the sample generated atµ = 0 and (set’) the sample obtained after
an accept-reject step with probability min(1, |ω ′

i /ω ′
i−1|). The indexi stands for theith configura-

tion in (set). This overlap can then be maximized by searching for the optimal path in the µ-β
plane, as shown in Figure 3. The line of maximal overlap forT aroundTC matches the transition
line, whereas forT = 0.9TC andT = 1.33TC it is approximately a line of constant temperature at
least in the area where the reweighting is reliable. A second limitation, which is not measured by
the overlap defined above is the sign problem. Its impact on the measurements iscontained in the
jackknife error.
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Figure 3: Overlap in theµ-β plane around the transition line: The transition line (taken from [7]) matches
the line of maximal overlap quite well, as expected [8].

4. Static qq̄ free energy at T 6= 0 and µ 6= 0

We used the Polyakov-loop correlator to computeφqq̄(T,µ, r), which denotes the difference in
the free energies with and without a staticqq̄ pair separated by distancer.

e−φqq̄(T,µ,r)/T+C(a) =
〈

L(r)L†(0)
〉

T,µ where L(r) =
1
3

tr
Nτ=1

∏
τ=0

U4(τ, r) (4.1)

HereC is a renormalization constant, which was fixed by first normalizing the zero temperature
potential demandingVqq̄(r0) = 0 and then removing this shift from the free energy atT 6= 0 and
µ 6= 0, as it is the self-energy of the static quark pair at a given lattice spacing.Note that this
type of renormalization is manifestly temperature independent. The finite temperature simulations
were carried out using dynamical staggered quarks withnf = 2+ 1 flavours on 4× 123 lattices.
The R-algorithm was used, the microcanonical stepsize was half of the lightquark mass. We
generated about 150000 configurations and calculated the determinant after every 50 trajectories
giving us about 1500 independent configurations atT = 0.9Tc andT = 1.33Tc and about 3000 at
T = Tc. Figure 4-6 showφqq̄ for the three temperatures. The potential atµB = 0 MeV is plotted
in black (upper curves), that atµB = 270 MeV in red (lower curves). For all temperatures only
slight changes can be observed between the potential at zero and finiteµ. This is expected as the
reweighting was performed along the lines of maximal overlap. For all temperatures the potential
reaches an asymptotic value at large distances, due to the screening of themedium. Generally it
can be stated, that for higherµ values the potential reaches a lower asymptotic value. Looking at
the different scales of the axes one observes that the change in the potential increases with falling
temperature, although being generally rather small. It can be observed that in the deconfined phase
the potential flattens out at shorter distances. This is also demonstrated in Figure 5, where in blue
(lowest curve) the potential atµB = 270 MeV reweighted not along the transition line but along the
line of constant temperature is drawn. Here the reweighting line cuts into the deconfined phase.
In Figure 7 the free energy at a fixed distance is plotted as a function of thebaryonic chemical
potential. Particulary in the confined phase and also along the transition line one observes an
increase of the errorbars due to the sign problem. A similar study using a Taylor expansion in

P
o

S
(L

A
T

2
0

0
5

)1
7

8

178 / 4178/4

P
o
S
(
L
A
T
2
0
0
5
)
1
7
8



Grand Canonical Potential for a Static q̄q Pair at µ 6= 0 Christa Guse

(µ/T) with 2 degenerate quark flavours and masses corresponding tomπ ≈ 770 MeV [11] was
also presented at the symposium. A thorough comparison is difficult, but we observe that the shifts
[φqq̄(T,0,∞)− φqq̄(T,µ,∞)] are in general agreement, although our values tend to be about 15%
smaller.

5. Conclusions

We have calculated the grand canonical potential of a staticqq̄ pair for three different lines on
theT-µ plane: along the transition line as well as along one line above and along one line below
it. All computations were done at physical quark masses on the line of constant physics using
an overlap improving multiparameter reweighting in the gauge couplingβ and in the chemical
potentialµ. We observed only a small change in the potential with growingµ in the parameter
range where our analysis was carried out.

Acknowledgments The computations were carried out at E ¨otvös University on the 330 processor PC

cluster of the Institute for Theoretical Physics and the 1024 processor PC cluster of Wuppertal University,

using a modified version of the publicly available MILC code [9] and a next-neighbour communication

architecture [10].
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Figure 4: The grand canonical potential for
T = 0.9 TC: The upper curve (black) denotes
the potential atµB = 0 MeV, whereas the
lower curve (red) is the potential reweighted
along the best reweighting line toµB = 270 MeV.
In order to reduce the noise and to make the plot
more readable, a box averaging was used. The
box size ranged from 0.008 fm, at short distances
to 0.2 fm at large distances.
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Figure 5: The grand canonical potential forT =

1.0 TC: In this case the upper curve (black) denoting
the potential atµB = 0 MeV and the slightly lower
curve (red) denoting the potential reweighted along
the best reweighting line lie nearly on top of each
other, due to the reweighting along the best reweight-
ing line. The lower curve (blue) is the potential
reweighted along a line of constant temperature to
µB = 270 MeV.
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Figure 6: The grand canonical potential
for T = 1.33TC: The upper curve (black) denotes
the potential atµB = 0 MeV, whereas the
lower curve (red) is the potential reweighted
along the best reweighting line toµB = 270 MeV.
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Figure 7: φqq̄ as a function ofµB for a fixed
distance ˆr =

√
10.
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