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1. Introduction

The interest in QCD at temperaturé&slarger than (a few) hundred MeV is triggered not
only by purely theoretical reasons, but also by ongoing heavy ion collision experiments, and by
cosmology. Given asymptotic freedom, a weak coupling expansion of this high-temperature phase
seems well within reach. In practice, however, this expansion converges only slowly, and even
shows a non-trivial analytic structure in the gauge coupiihg

By now, the problematic degrees of freedom have been identified. Theyotigauge-field
modes with typical momenta~ gT, which give rise to odd powers i as well asiltrasoftmodes
p ~ g°T, which enter the series via non-perturbative coefficients. For parametrically small values
of the couplingg, these scales are well separated, such that an effective field theory treatment
becomes feasible.

The general picture is that perturbation theory should work fine for parametrizatiyscales
p ~ 2nT, while soft and ultrasoft scales need improved analytic schemes, or non-perturbative
treatment. We will work within dimensionally reduced effective theories, in order to treat these
different physical contributions separately, in a consistent scheme with controllable errors.

It appears mandatory to give quantitative evidence for the general picture sketched above. Tc
this end, the strategy is to pick some simple observables and compare, as a fundtiofulbf
results (e.g. from 4d lattice QCD simulatiori§)[with predictionsfrom the soft/ultrasoft effective
theory setup, which should be exact for asymptotically large temperatures. This has been done for
e.g. static correlation lengthg][ and in general agreement was found dowi te& 2T;, whereT,
is the deconfinement phase transition temperature.

As another concrete example of an observable allowing for an unambiguous comparison, we
discuss the spatial string tensionin this paper. It is defined in a manifestly gauge invariant way
as the coefficient in the area law of a large rectangular Wilson\Vdgp,, R) in (x1,X%2) plane,
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It has been measured in SU(3) on the 4d lattice, as a function of the tempdrdiige Ref. [L]),

Vo _ ¢<I) | (1.2)

Our aim here is to get the effective theory predictiondgrand to compare it with the lattice
data, in order to assess the performance of the effective theory Sgtlp the following two sec-
tions, we sketch the 2-step perturbative matching process of 4d QCD ontgagokebdstatidpCD,
and discuss convergence properties. In secfiowe take existing data oos from 3d lattice
MQCD, match it to 4d QCD, and compare with the 4d lattice data.

2. Effective theory setup: QCD— EQCD

At high temperatures, all QCD dynamics is contained in a simpler, three-dimensional effective
field theory called EQCD,

1
e = STrRG+Tr Dy, Aol + METrAS + Ag (TP AG)” + AL TrAG +... (2.1)
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whereR = i[Dk,Dy]/ge, Dk = dk — igeAx with the dimensionful 3d gauge coupling, and the

dots represent higher-order operators. In order to correctly describe all contributions from hard
and soft scales, the parameters of 3d EQCD have to be regarded as matching coefficients, and are
therefore related to the parameters of full QCD (bajfdr, Nc, N, Ug, Mg). Perturbative matching

[4] gives, schematically,

mg = T2 {#g? +#g*+ ...} , (2.2)
A = T gt ) (2.3)
0 = T{?+#g* +#°+ ...}, (2.4)

where all coefficients symbolized by “#" above are known. Most can be conveniently read from
e.g. Ref. p], while theg® term in the last line has been obtained only recerflly Higher-order
coefficients could be obtained straightforwardly from the next order in the loop expansion.
There are also higher-order operatdikih EQCD which become important at some point. In
general, their relative magnitude can be estimatedjas [
_ 2 DD P (g°T)?
(2nT)2 (27T)2
where we assumed to be considering an observable dominated by the ultrasgitscgle. Thus,
the relative magnitude is at mostg®, smaller than any known terms in Eq8.2)—(2.4).
At this point, having the first few terms of the perturbative series of, gays g2(g?,T) at
hand, one may ask about its convergence properties. In practice, renormalization is needed of
course: leg? = g?(u) be the (4d QCDMS coupling. From the solution of the 2-loop renormal-
ization group equation, we define tMS scale parameter as usual, and find the 2-loop running
coupling as a function oft /Ay,

0% e, (2.5)
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whereby = —Bo/2(4r)?, by = —1/2(4x)* are coefficients of the QCD beta function. Hence,
we can now writegZ = g2 (11, Aws, T) = T ¢ (1/T, T /Ays) as a function of two dimensionless
variables.

Formally, the renormalization scale dependence is of higher order, while numerically, there
is u dependence due to our truncation of the perturbative series. We are free to choose some
optimization procedure, e.g. tipeinciple of minimal sensitivityaccording to which we chooge
as the extremum of the 1-loop expressiond@r This leaves ugZ = T ¢ (T /Ays) as a function
of one variable only, which is plotted in the left panel of Figfor Ny = 3. Comparing 1-loop
and 2-loop expressions (the gray band shows the effect of a scale variationpvithi.5...2.0) x
Uopt), Note that the process of perturbative matching shows very comforting convergence properties:
corrections are in the 10-20% range, and scale dependence gets significantly reduced.

In the right panel of Figl, we show the effective gauge coupling™ = g2/4xT of EQCD,
for severalN;, in a much smaller temperature interval close to the phase transition temperature
T, ~ NAys. Noting that this 3d effective coupling is reasonably small even at these low temperatures,
we are led yet again to observe that treating the hard modes perturbatively appears well justified.
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Figure 1: Left panel:The 1- and 2-loop values fo2gT. For each T, the scalg has been fixed tgopt as
explained in the text. The gray band corresponds to a variatiqugfwithin a factor of two.Right panel:

The effective 2-loop gauge coupling of EQCdrﬁff = g%/47tT, for various values of N Scale dependence
results fromuopt variation as before. Note the different ranges of temperatures on the horizontal axes.

3. Effective theory setup: EQCD— MQCD

The low-energy behaviour of 3d EQCD is contained in another three-dimensional effective
field theory, called MQCD,

1
2
As before, the dots stand for higher-order operators, while the matching coefficients can be deter-
mined perturbatively7, 3]

L TrRI 4 ... (3.1)

2 4 24 (1),(2)
% = g§{1+#r?]E +#9E+#gElE+...} . (3.2)
E

mg mg

Let us note here — without showing the corresponding plot — that this expansion converges ex-
tremely well, even close t&. Hence, we can safely ignore higher loop correctiongfpr
The higher-order operators of MQCD,

DD,
mg

give a relative contribution parametrically smaller than any of the known terms in3g), &nd
will be neglected in the following.

2T2
1)

5$M ~ gé XM ~ gé (3.3)

4. Results

We are now in a position to write down the effective theory prediction for the spatial string
tensionos, EQ. (L.1). The observables exists not only in 4d QCD, but also in 3d SU(3) gauge
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Figure 2: Comparison of 4d lattice data for the spatial string tensidh vith expressions obtained by
combining 1-loop and 2-loop results foEgogether with Eq. $.2) and the non-perturbative value of the
string tension of 3d SU(3) gauge theory, E4.1j. The upper edges of the bands correspond.fd\§s =
1.35, the lower edges to.J\ys = 1.10.

theory, which is nothing but MQCD, Eqg3(1). Since the 3d gauge coupling is dimensionful, and
furthermore is the only scale that MQCD possesses, naive dimensional analysis digtatégs).

The proportionality constant is non-perturbative, and can be measured by 3d lattice simulations.
Taking most recent lattice daté][

‘/263 = 0.5531) . 4.1)
O
To compare with the 4d lattice results of the form shown in ER)((see Fig2), we need to

relateg?, andT. First, using Eq.%.2) and Egs. 2.2—(2.4),

VOs _ oG _, (T
- = 05531 ET g A (4.2)

Next, we need to relatdys andTc. This is in fact a classic problem in (4d) lattice QCD. One line
of measurement®] employs thel = 0 string tension to getl]

Te Te/\/o
— = —"— = 116(4), 4.3
Nos  Nis/\o ) .
while another possibility is to go via the Sommer scdld [
Tc rolc
L — = 1.25(10) . 4.4
As " Tole (10) (4.4)

To be conservative, we will consider the inter¥gl Ays = 1.10...1.35, which also incorporates the
result of Ref. [L2].
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In Fig. 2, we finally compare the 3d effective theory predictiondgigray bands) with the 4d
lattice data (black dots). As a caveat, note that the lattice data has not been extrapolated to the con-
tinuum limit. On the other hand, we stress that the comparison is parameter-free. We may take the
excellent agreement of the 2-loop prediction with the lattice data as support for hard/soft+ultrasoft
picture of thermal QCD.

To conclude, we have given yet another example of a static observable in thermal QCD, for
which the program of dimensional reduction works well, even down to temperatureaT,.
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