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We propose a method to calculate the QCD level density directly from the thermodynamic quan-

tities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM).

Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also

it has a close connection to phenomenological analyses of the lattice data as well as experimental

data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide

a useful tool to study QCD level density.
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1. QCD level density

In this report, we discuss the QCD level density in a finite boxwith a sizeV. Denoting energy
eigenstates of the QCD HamiltonianHQCD by En, the energy-level densityA(E,V) is defined by
counting the number of states in the range ofE to E+dE, i.e.,

A(E,V) ≡ ∑
n

δ (E−En) with HQCD|Ψ〉 = En|Ψ〉. (1.1)

Using this level density, the partition function is writtenas its Laplace transform;

Z (β ,V) = Tr
[

e−βHQCD

]

=

∫ ∞

0
A(E,V)e−βEdE, (1.2)

whereβ ≡ 1/T with T being the temperature of the system. Thermodynamic quantities such as
the pressure,p, and the energy density,ε , are related to the partition function as

p(β ) =
1

Vβ
lnZ (β ,V), ε(β ) = − 1

V
∂ lnZ (β ,V)

∂β
. (1.3)

Eq.(1.2) together with Eq.(1.3) imply that every thermodynamic quantity is obtained from the in-
formation of the level density defined at zero temperature. Especially, Eq.(1.2) tells us that the
properties of QCD phase transition at finiteT, which is characterized by the non-analytic behavior
of p(β ) in the thermodynamic limit, are already encoded in the QCD level density defined atT = 0.

The investigation of the level density in nuclear physics and in hadron physics has a long
history: For example, Bethe studied the nuclear level density by evaluating the partition function
of the Fermi gas [1]. By performing the inverse Laplace transform, he showed thatA ∝ exp(2

√
cE)

with c being a constant related to single-particle level density.Hagedorn studied hadronic level
density and has derived an asymptotic formula for the state density of hadrons with a massm,

ρ(m) ∝
1

ma exp(m/TH). (1.4)

Herea andTH are some constants and the latter is called the Hagedorn temperature [2]. Eq.(1.4) is
derived from the celebrated bootstrap model in which the state densityρ(m) and the energy-level
densityA(E = m,V0) in a fireball of sizeV0 are identified for largem. The exponential growth of
the hadronic state density, Eq.(1.4), agrees with experimental data up to 2 GeV at present and the
agreement becomes better as new resonances are included [3]. Because of this success, the hadron
resonance gas model as well as the Hagedorn’s formula have been and is being widely used in QCD
phenomenology. However, this model describes only the hadronic matter at temperature belowTH .
If we try to calculateZ with Eq.(1.4) aboveTH , the integral does not converge.

On the other hand, progresses in QCD thermodynamics has beenobtained steadily by the first
principle lattice simulations. The results show thatε and p increase rapidly near the transition
temperatureTc and approach to the black-body formula,ε ∼ 3p ∝ T4, for sufficiently high temper-
ature. It has been also found that thermodynamics belowTc is well described by hadron resonance
gas model as long as appropriate hadron masses relevant to lattice simulations are employed [4, 5].
Therefore, the time is now ripe to consider a unified and model-independent description of QCD
thermodynamics on the basis of the QCD level density. In fact, detailed studies of the level density
is particularly useful to identify the relevant degrees of freedom in hot QCD below and aboveTc.
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Figure 1: A schematic model for the pressure (left panel) and the energy density (right panel).

Now let us first pay attention to a close similarity between Eq.(1.2) and the spectral repre-
sentation of the hadronic two-point correlation function,G, as a function of the imaginary time
τ :

G(τ) =
∫ ∞

0
R(ω)e−τωdω , (1.5)

whereR(ω) is the spectral function andω is the frequency. Formal correspondences,Z ↔ G,
β ↔ τ , E ↔ ω andA ↔ R, are clear by comparing Eq.(1.2) with Eq.(1.5). Since the maximum
entropy method (MEM) is known to be a powerful tool to extractthe spectral functionR from the
lattice dataG [6], the same technique is expected to be used to extract the level densityA(E,V)

from the lattice data ofZ .

2. A toy model

Before testing the idea of using MEM to extract the level density A(E,V), let us first discuss
the general structure ofA expected in simple cases where some analytic study is possible. First of
all, the inverse Laplace transform (the Bromwich integral)of Eq.(1.2) reads

A(E,V) =
1

2π i

∫ γ+i∞

γ−i∞
Z (β ,V)eEβ dβ =

1
2π i

∫ γ+i∞

γ−i∞
e(p(β)V+E)β dβ , (2.1)

whereγ is a real number chosen so that all the singularities ofZ (β ,V) are to the left of it. In the
leading order of the saddle point approximation, one readily finds

A(E,V) ∝ exp(s(ε)V), (2.2)

whereε(≡ E/V) is the energy density ands(ε) is the entropy density.
Consider a simplest case of free massless particles where the pressure is given byp(β ) =

(σ/3)T4. Then, by working out the Gaussian integral around the saddle point, one finds

A(E,V)|
EV1/3≫1

∼ 1√
8πV

(

σ
(E/V)5

)1/8

exp

(

4
3

σ1/4V(E/V)3/4
)

, (2.3)
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Figure 2: Left panel: A schematic picture ofs(ε) ∝ lnA(E,V) in a toy model as a function ofε = E/V.
Right panel: The QCD level densityA(E,V) in an arbitrary unit extracted from the lattice data.

which implies lnA∼ E3/4 at high excitation energies.
To examine a more realistic example with a phase transition,let us consider the bag equation

of state in which we assume free massless pions (free massless quarks and gluons) below (above)
Tc. In this case, the pressure of the system is given by

p(T) =
T
V

lnZ =
σh

3
T4θ(Tc−T)+

(σq

3
T4−B

)

θ(T −Tc), (2.4)

whereB is the bag constant which is related the critical temperature asTc = [(3B)/(σq−σh)]
1/4.

σh and σq are proportional to the number of degrees of freedom in the hadronic phase and the
quark-gluon plasma phase, respectively. A schematic sketch for p/T4 andε/T4 is given in Fig. 1.

For the bag equation of state given in Eq.(2.4), the exponents(ε) in Eq.(2.2) turns out to be

4
3

σ1/4
h

ε3/4 [I],
1
3

σhT3
c +

ε
Tc

[II ],
4
3

σ1/4
q (ε −B)3/4 [III ]. (2.5)

Here the formulas [I], [II] and [III] are valid forε < εc1, εc1 < ε < εc2, andε > εc2, respectively.
Note thatεc1 = σhT4

c (εc2 = σqT4
c +B = 1

3

(

4σq−σh

)

T4
c ) is the energy density just below (above)

the phase transition point as shown in the right panel of Fig.1.
The behavior of the exponents(ε) given in Eq.(2.5) is illustrated in the left panel of Fig. 2.

The level density shows the Hagedorn type behavior lnA ∝ E in the phase transition region [II],
while it shows softer behavior lnA∼ E3/4 in the high temperature region [III]. The exponent has a
crossover fromE to E3/4 at E = Ec2 = εc2V at which the quark-gluon plasma starts to emerge.

3. Application of MEM

Let us now try to extractA(E,V) from lattice QCD data of the thermodynamic quantities.
Following the idea of MEM, we minimize the “free-energy” functional Q(A) with respect to the
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level densityA:

Q =
χ2

2
−αSinf. (3.1)

Here,Sinf is the information entropy given by

Sinf =
∫

( f −1− f ln f )dE, A(E,V) = Aasy(E,V)× f (E,V), (3.2)

whereAasy(E,V) implies a “default model” representing the asymptotic behavior of A in the large
E limit. In the present study, we adoptAasy(E,V) = (V1/3/

√
8π)exp

(4
3σ1/4Vε3/4

)

which is pro-
portional to the asymptotic form ofA for a free quark-gluon gas. We adjustσ to reproduceε/T4

measured on the lattice at high temperature. For the likelihood functionχ2, we have chosen

χ2 =
n

∑
i=1

(

plat
i − 1

Vβi
ln
∫

A(E,V)e−βiEdE

∆plat
i

)2

+
n

∑
i=1







ε lat
i −

∫

(E/V)A(E,V)e−βi EdE
exp(Vβi p

lat
i )

∆ε lat
i







2

, (3.3)

whereplat
i andε lat

i are the data obtained by lattice simulations atn discrete values of the inverse
temperatureβi . Also, ∆plat

i (∆ε lat
i ) denotes statistical error of the pressure (energy density).

We use the 2-flavor full QCD data with improved Wilson quarks generated on a 163×4 lattice
[7]. The spatial size of the lattice in the physical unit is approximately(4fm)3, although the physical
volume changes for different values ofβi . As a first step, we chooseV = 1 fm3 in Eq.(3.3) by
assuming small volume-dependence of the lattice data. We use the data for the pressure and energy
density withmPS/mV = 0.90 in which there are “seven” independent data points (n = 7).

A(E,V) reconstructed by MEM is shown by the solid line in the right panel of Fig.2 in an
arbitrary unit with the logarithmic scale. Dashed line isAasy mentioned above. To set the scale in
the horizontal axis, we assumeTc ≈ 175MeV. Also, we have chosenα = 1 in the present MEM
analysis: eventually it has to be eliminated by calculatingthe probability distributionP[α ] [6]. As
can be seen from the figure, the behavior ofA(E,V) at highE is consistent withAasy∼ E3/4 (the
dashed line), whileA(E,V) decreases strongly aroundE = 9−10GeV and deviates substantially
from Aasyat low energies. This rapid crossover of lnA is qualitatively consistent with what we have
discussed using the toy model.

Now we briefly discuss some systematic uncertainty in the MEManalysis. Instead of utilizing
both plat

i andε lat
i as in Eq.(3.3), we have done MEM analyses by usingplat

i only and by usingε lat
i

only. In these cases, the crossover region has moved±20% from that shown in the right panel
of Fig. 2. Therefore, the systematic error due to different choices ofχ2 is still large at present as
long as we take only seven data points. Nevertheless, we believe that MEM could become a useful
tool to extract the QCD level density if large number of data points with high accuracy become
available in the future.

4. Conclusions and outlook

To understand thermodynamic properties near the QCD phase transition, the knowledge of
the energy-level density is quite useful. In this report, weproposed a new method to calculate the
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QCD level density and have made a feasibility test using lattice data. Although further systematic
studies are necessary by increasing the number of data points, the direct calculation of the QCD
level density seems to be possible using the maximum entropymethod.

An extension of the present study to the system at non-zero baryon density is interesting to
be explores in connection with recent progress of finite density lattice QCD. The grand partition
function Z (β ,µ ,V) can be separated into the canonical partition functionsZN(β ,V) for each
fixed quark numberN by the fugacity expansion as

Z (β ,µ ,V) = ∑
N

eNβ µ
ZN(β ,V) = ∑

N
eNβ µ

∫ ∞

0
A(E,N,V)e−βEdE. (4.1)

Then, by using the lattice data with several different values of β andµ , one may extract the level
densityA(E,N,V). Such an analysis will shed lights on colored composite states with non-zero
baryon numbers aboveTc such as the quark-gluon bound state and the diquark [8, 9]. Ifsuch states
are important to thermodynamic quantities, they should also show up in the QCD level densities
with N = 1 andN = 2.
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