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We propose a method to calculate the QCD level density dyr&oim the thermodynamic quan-
tities obtained by lattice QCD simulations with the use @f thaximum entropy method (MEM).
Understanding QCD thermodynamics from QCD spectral ptagsehnas its own importance. Also
it has a close connection to phenomenological analysesdéttice data as well as experimental
data on the basis of hadronic resonances. Our feasibilitlysthows that the MEM can provide
a useful tool to study QCD level density.
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1. QCD level density

In this report, we discuss the QCD level density in a finite itk a sizeV. Denoting energy
eigenstates of the QCD HamiItonia%fQCD by E;, the energy-level densit)(E,V) is defined by
counting the number of states in the rang&adb E + dE, i.e.,

AE.V) = z O(E—En) with J#5cp|W) = Eq|W). (1.1)
n
Using this level density, the partition function is writtas its Laplace transform;
Z(BV) =Tr[e P 0] = / AE,V)e PEE, (1.2)
0

wheref3 = 1/T with T being the temperature of the system. Thermodynamic qiemstich as
the pressurep, and the energy density, are related to the partition function as
P = g2 (B, e(p) =~ o B

Eq.(1.2) together with Eq.(1.3) imply that every thermoalyric quantity is obtained from the in-
formation of the level density defined at zero temperaturspeEially, Eq.(1.2) tells us that the
properties of QCD phase transition at finitewhich is characterized by the non-analytic behavior
of p(B) in the thermodynamic limit, are already encoded in the Q@Blldensity defined af = 0.

The investigation of the level density in nuclear physicd anhadron physics has a long
history: For example, Bethe studied the nuclear level dgisi evaluating the partition function
of the Fermi gas [1]. By performing the inverse Laplace tfama, he showed thak 0 exp(2+/CE)
with ¢ being a constant related to single-particle level denditggedorn studied hadronic level
density and has derived an asymptotic formula for the stsity of hadrons with a mass,

(1.3)

p(m) O % exp(m/Ty). (1.4)

Herea and T, are some constants and the latter is called the Hagedorretatape [2]. Eq.(1.4) is
derived from the celebrated bootstrap model in which the stansityp(m) and the energy-level
densityA(E = m,V,) in a fireball of sizeV,, are identified for largen. The exponential growth of
the hadronic state density, Eq.(1.4), agrees with expettimhelata up to 2 GeV at present and the
agreement becomes better as new resonances are includBe¢alise of this success, the hadron
resonance gas model as well as the Hagedorn’s formula hawvednel is being widely used in QCD
phenomenology. However, this model describes only thedmicimatter at temperature beldyy.

If we try to calculateZ” with Eq.(1.4) abovd,,, the integral does not converge.

On the other hand, progresses in QCD thermodynamics hasobégined steadily by the first
principle lattice simulations. The results show tlsaand p increase rapidly near the transition
temperaturd, and approach to the black-body formutay 3p 0 T4, for sufficiently high temper-
ature. It has been also found that thermodynamics b&lag/well described by hadron resonance
gas model as long as appropriate hadron masses relevatiide gmulations are employed [4, 5].
Therefore, the time is now ripe to consider a unified and modgpendent description of QCD
thermodynamics on the basis of the QCD level density. In Gthiled studies of the level density
is particularly useful to identify the relevant degreesrettiom in hot QCD below and aboVg
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Figure1: A schematic model for the pressure (left panel) and the gragsity (right panel).

Now let us first pay attention to a close similarity between(E@&) and the spectral repre-
sentation of the hadronic two-point correlation functi@),as a function of the imaginary time
T

(1) = /O “Rlw)e @dw, (1.5)

whereR(w) is the spectral function ana is the frequency. Formal correspondencés— G,
B < 1, E < wandA < R, are clear by comparing Eq.(1.2) with Eq.(1.5). Since th&imam
entropy method (MEM) is known to be a powerful tool to extrdnet spectral functiolR from the
lattice dataG [6], the same technique is expected to be used to extracetet densityA(E,V)
from the lattice data of?".

2. A toy model

Before testing the idea of using MEM to extract the level dgn&(E,V), let us first discuss
the general structure @& expected in simple cases where some analytic study is pessilst of
all, the inverse Laplace transform (the Bromwich integodliEq.(1.2) reads

1 y-ioo 1 y-tioo

AE\V)=— Z(B,V)eFPdB = —

(P(B)V+E)B 21
2T[| y_ioo 2Tﬂ y_ioo € dB7 ( )

wherey is a real number chosen so that all the singularitie€@p,V) are to the left of it. In the
leading order of the saddle point approximation, one rgduolitds
AE,V) Oexps(e)V), (2.2)

wheree(= E/V) is the energy density arsfie) is the entropy density.
Consider a simplest case of free massless particles wherpréissure is given bp(f3) =
(g/3)T4. Then, by working out the Gaussian integral around the saplaiint, one finds

1/8
A(E’V)’EV”3>>1N\/81W((EX/)5> exp(%al/“\/(E/\/)3/4>’ (2.3)
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Figure 2: Left panel: A schematic picture &fe) O InA(E,V) in a toy model as a function &f = E/V.
Right panel: The QCD level densiy(E,V) in an arbitrary unit extracted from the lattice data.

which implies InA ~ E3/4 at high excitation energies.

To examine a more realistic example with a phase transil@ms consider the bag equation
of state in which we assume free massless pions (free masglasks and gluons) below (above)
Te. In this case, the pressure of the system is given by

_ T inw Ghragt Gar4_ _
p(T) = 2 = 2T~ T)+ (ST -B) 6(T - o), (2.4)
whereB is the bag constant which is related the critical tempeeaasiTe = [(3B)/(dq — 0;,)] /4.
0,, and gq are proportional to the number of degrees of freedom in thizdmac phase and the
quark-gluon plasma phase, respectively. A schematiclsketq/T* ande /T4 is given in Fig. 1.
For the bag equation of state given in Eq.(2.4), the exposientin Eq.(2.2) turns out to be

£

4 1
_0-1/483/4 [I], _O-th3+? [”]’
Cc

3% 3 203/4(8—8)3/4 . (2.5)

Here the formulas [I], [II] and [Ill] are valid fog < £, &4 < € < &, ande > &, respectively.
Note thate,, = 0, T (g, = 0q T + B = § (404 — 0,) T¢) is the energy density just below (above)
the phase transition point as shown in the right panel of Eig.

The behavior of the exponeste) given in Eq.(2.5) is illustrated in the left panel of Fig. 2.
The level density shows the Hagedorn type behavidérIhE in the phase transition region [l1],
while it shows softer behavior lh~ E%/# in the high temperature region [Ill]. The exponent has a
crossover fronE to E¥4 atE = E, = €,V at which the quark-gluon plasma starts to emerge.

3. Application of MEM

Let us now try to extracA(E,V) from lattice QCD data of the thermodynamic quantities.
Following the idea of MEM, we minimize the “free-energy” fttional Q(A) with respect to the
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level densityA:

2
Q=75 ~aSy @)

Here,S,; is the information entropy given by

Sy = [(f-1-fINH)dE,  AEV) = AwyfEV) x T(EV). (3.2)

whereAgsy(E,V) implies a “default model” representing the asymptotic lvédreof A in the large
E limit. In the present study, we adopts(E,V) = (V¥3//8m) exp(30/4V e¥/4) which is pro-
portional to the asymptotic form & for a free quark-gluon gas. We adjustto reproduces /T
measured on the lattice at high temperature. For the lizetiffunctiony?, we have chosen

exp(V B pi*)
= , (3.3)
Ap!at ; A gilat

~BE
n <|og<'=lt_viﬁl|nfA(E,V)e—B.EdE)ZJr n [ gt LEMAEV)e A dE
|

where piat and g are the data obtained by lattice simulationsaliscrete values of the inverse

temperaturgd,. Also, Apl (Ag/®') denotes statistical error of the pressure (energy dénsity

We use the 2-flavor full QCD data with improved Wilson quarkserated on a £6«< 4 lattice
[7]. The spatial size of the lattice in the physical unit ipegximately(4fm)3, although the physical
volume changes for different values Bf As a first step, we choosé = 1 fm? in Eq.(3.3) by
assuming small volume-dependence of the lattice data. Wehedata for the pressure and energy
density withmpg/m, = 0.90 in which there are “seven” independent data points 7).

A(E,V) reconstructed by MEM is shown by the solid line in the righb@aof Fig.2 in an
arbitrary unit with the logarithmic scale. Dashed lineAigy mentioned above. To set the scale in
the horizontal axis, we assunig~ 175MeV. Also, we have chosem = 1 in the present MEM
analysis: eventually it has to be eliminated by calculathrgprobability distributiorP[a] [6]. As
can be seen from the figure, the behavioAGE,V) at highE is consistent wittAssy~ E3/* (the
dashed line), whilé\(E,V) decreases strongly aroutd= 9 — 10GeV and deviates substantially
from Agsyat low energies. This rapid crossover oAlis qualitatively consistent with what we have
discussed using the toy model.

Now we briefly discuss some systematic uncertainty in the Msllysis. Instead of utilizing
both pi& and &/ as in Eq.(3.3), we have done MEM analyses by ugifigonly and by using/
only. In these cases, the crossover region has mex#@Po from that shown in the right panel
of Fig. 2. Therefore, the systematic error due to differdrgices ofx? is still large at present as
long as we take only seven data points. Nevertheless, wevedhat MEM could become a useful
tool to extract the QCD level density if large number of daténgs with high accuracy become
available in the future.

4. Conclusions and outlook

To understand thermodynamic properties near the QCD phhassitton, the knowledge of
the energy-level density is quite useful. In this report,pr@posed a new method to calculate the
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QCD level density and have made a feasibility test usingckatlata. Although further systematic
studies are necessary by increasing the number of datasptietdirect calculation of the QCD
level density seems to be possible using the maximum entragtiiod.

An extension of the present study to the system at non-zexmbalensity is interesting to

be explores in connection with recent progress of finite idgtettice QCD. The grand partition
function 2°(B,u,V) can be separated into the canonical partition functigfigf,V) for each
fixed quark numbeN by the fugacity expansion as

Z(B,u,V) = %eNB“gN(B,V) = %eNB“ /OwA(E,N,V)e‘BEdE. (4.1)

Then, by using the lattice data with several different valaE8 and u, one may extract the level
densityA(E,N,V). Such an analysis will shed lights on colored compositeestatth non-zero
baryon numbers abovk such as the quark-gluon bound state and the diquark [8, Slich states
are important to thermodynamic quantities, they should al®ww up in the QCD level densities
with N =1 andN = 2.
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