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1. Introduction

There is now a substantial body of lattice simulation results indicating that Casialing
[1] or behavior close to it occurs in the string tensions associated withrelifeepresentations of
SU(N) gauge theories in-3 1 and 2+ 1 dimensions. Casimir scaling is exact in two dimensions,
but a firm foundation in higher dimensions is lacking. String theory provédbgoretical basis for
an alternative, sine-law scaling, but it has proven difficult to differéat@asimir scaling and sine-
law scaling in simulations. We will show below that this universal, or neavassal, behavior,
can be spoiled by terms involving adjoint Polyakov loops added either to tigegaction or to
the effective action for Polyakov loops. In addition, such terms also mthrge mixing between
representations in Polyakov loop two-point functions, and directly cbtiteosize of the adjoint
Polyakov loop.

The dominant effect on finite-temperature physics of adding heavylgsitcthe adjoint rep-
resentation is well-known. In perturbation theory, the effect on the RolyopP can be modeled
by adding a term

M2T2
—hTraP=— [#KZ(M/T)} TraP (1.2)
to the gauge action with> 0. Such terms favdP € Z(N), and thus spontaneous breakingZ¢N )
symmetry. One might believe that only the cdise O is interesting. However, there are several
examples where terms arise in the effective action which faviNg-symmetric phase.

Perhaps the most interesting case is recent work by Diakonov et ati@]have calculated
the contribution to the effective potential of a new class of finite temperatataritons (calorons)
with a non-trivial Polyakov loop at spatial infinity. Their results indicate atahility in the decon-
fined phase at sufficiiently low temperatures. It is very interesting to casrtherwith related work
on.# = 1 supersymmetric Yang-Mills theory d®® x S [3, 4]. String tensions can be calculated
exactly from instanton contributions to the effective potential, and showlaimescaling.

Instability of P = | also occurs in the one-loop effective potential for constant chromoetiagn
fields at finite temperature [5]. At low temperatures, the minimum of the reabpé#ne effective
potential alternates between the confined and deconfined phases.vafothe presence of an
imaginary contribution to the effective potential indicates that the Savvidykitisgas present at
finite temperature.

Another example occurs for gauge theories in small spatial volumes. Tlgratiom over
global color symmetry leads to a term proportional to the log of Haar measuhe iaffective

action in the form
In [sin2 <
2

and this term is responsible for confinement. For all valué¢, dfiere is a unique set of eigenvalues
where Haar measure peaks, corresponding to uniform spacing omitharale. For this set of
eigenvaluesTrgrP = 0 for all representations with non-zero N-ality [6, 7]. For laigethere is a
phase transition to a deconfining phase [8].

It is thus interesting to consider all valuestofin lattice gauge theories, standard arguments
[9] tell us that a low-temperature confined phase will exist fohaind there is no phase transition
at 3 = 0 ash is varied. The two limiting case$) — £, are particularly interesting. Al is

6, — 21 n n
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Figure 1: The expected value dfraP as a function oh.

taken large and positivé® tends towards elements 8fN), P = 2" with z= exp(2mi/N), giving

TraP — N2 — 1. In this limit, the confined phase, witfreP = 0, must be realized by averaging
over differentZ(N) values in a manner similar to the high-temperature phas&@aspin system.

We refer to this as th&(N) limit. As his taken large and negatiVEraP goes to its minimum value

of —1, which leads ta rg P = 0. We refer to this as the master-field limit, because there is a unique
set of eigenvalues @, evenly spaced on the unit circle, as occurs in the large-N limit.

2. 1+1 Dimensions

We consider the case of an external fibld¢oupled to a(1+ 1)-dimensionalSU(2) gauge
theory. It is convenient to use the Hamiltonian formalism, exchanging the sbbeandt, so that
the width of the system is/T'. The Hamiltonian can be written as

H = &Cz — hxa (2.1)

whereC; is the quadratic Casimir operator and the constanrt g2/2T will henceforth be set to
one. This model is easily studied on a finite-dimensional subspace of thetHifizee of gauge-
invariant states, which is spanned by the group characters. Theyezigamvalues are related to
string tensions bye; = 0;/T. Figure 1 shows the expectation val{ieraP) as a function oh.
Consistent with our general analysis aboyEraP) asymptotically approches 3 &s— +o, and
approaches-1 ash — —o. A special feature of & 1 dimensions is thafTraP) is exactly zero
whenh = 0; in higher dimensiong,TraP) is very small but positive in the confined phase.

We can define an effective "mass” for each representgtiorterms of connected correlation
functions as

MYy 00 = — £ In[(X (0)x; (9).. (2.2)
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Figure 2: The effective masMei¢ as a function of scaled distance as measured by variouskeelyaop
correlation functions.

For large|h|, the behavior of the effective masses shows a rapid approach to thestigtriag
tension in eaclz(2) sector. For small values & we can see the persistence of Casimir scaling
over some distance, as shown in figure 2.

Although each correlation functio(r)(j (0) xj (t)>C is dominated at large distances by the light-
est string tension in ead¥-ality sector, the infinite set of string tensions which exigtat0 persist
for all h, and are obtained from the eigenvaluesdoby Ej = oj/T. For simplicity, we label the
eigenvalues by their association with a given representatiba=aQ, i.e., by j. As seen in figure 3,
eigenvalues, and hence string tensions, vary smoothlyhwith

The overall picture we have seen irtll dimensions andll = 2 should carry over to higher
dimensions and largeM. In the limit of large positiveh, Polyakov loops become more and more
like Z(N) spins, and averaging over different valueZ¢N) is necessary for confinement. In the
opposite limit, a single field configuration gives confinement without the nereahfy averaging.

3. Higher Dimensions

We have studied the effects of adjoint potential terms in lattice Polyakov |degtigt actions
using mean field theory, with results similar to those seen-nlldimensions. We use the most
generalZ(N)-invariant form for the Polyakov loop effective action

Sff=— JjAkBXjAXkB_ZhAijA-f—.. (3.1)
jAkB ]

where A and B label representations and j and k label sites. The cosplingan be non-zero
only for representations of zemd-ality. The couplings)jake are zero unlesé andB have total
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Figure 3: Eigenvalues; = g;j/T of the Hamiltonian as a function &f

N-ality zero, and there may be additional terms involving three or more sitesddrheant term
is known from lattice simulations to be a positive two-site nearest-neighb@liogy10, 11]. In
the strong coupling limit, the coefficienigg can be calculated analytically; the couplirgs are
identically zero in that limit. The mean fields are given by

Kia = ZJjAkBMkB‘F hja+ .. (3.2)
3

and are determined self-consistently in term#/gf via
J (dUj) Xis €xp3 aKjaXia
J(dUj) expy aKjaXia

where the single-site integral is over the Polyakov loop varighleThe Polyakov loop two-point
functions satisfy

Mijg = (XjB)o = (3.3)

; |:—'JjAkB+ 5ijMKJ_A Gikaic = 0ji Oac. (3.4)
B
where possible extra terms have been suppressed.

It is straightforward to show that the phenomena observedtii Himensions as the adjoint
couplinghagj is varied occur using mean field theory in higher dimensions as well. The &djoin
expectation vaIue{XAdj>0, an indicator of gluon confinement, varies wiihtaking its extremal
values wher — +oo. The matrixdKja/dM;g is similar to a mass term in continuum field theories.
Itis the inverse of

IMjs/0Kja = (XiBXia)o— (XiB)o (XiA)o- (3.5)

From this, it is easy to show the smooth variation of string tension ratidsigvaried, and the
strong mixing of representations of the saMality when |h| is large. Other features of two-
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dimensions, such as the rapid decrease to zero of the lightest string tagkiefnco, also occur in
mean field theory.

The small value of the renormalized adjoint Polyakov loop measured in latticdasioms is
consistent with all the mean field couplingsa being small. This would in turn imply that the
couplingsh are small as well. In the limiting case where s and allh’s are zero, the matrix
JKja/0Mig is one only wherA andB are conjugate representations, and zero otherwise. In this
limiting case, mixing can still occur via the two-site couplifigks. Such a term has recently been
measured iBU(2) lattice simulations, but it is small [12].
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