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1. Introduction

To make the determination of |Vub| from exclusive semileptonic B → π decays competitive
with that from inclusive decays requires a means of using directly calculated and/or measured
form-factor values to constrain the overall q2 shape of the form factors, f + (and f 0). Integrated or
partially integrated decay-rates can then be compared to experiment to allow the extraction of |Vub|.
Dispersion approaches offer a model-independent way to accomplish this task. Dispersive bounds
have been applied to B → π decays [1, 2, 3, 4, 5, 6] with recent work [6] combining a constraint
on |Vub| f +(0) from factorisation/SCET with lattice QCD inputs at high q2 and a ChPT result at
q2

max = (mB −mπ)2. Here we consider an alternative technique, using multiply-subtracted Omnès
dispersion relations as a means to incorporate input values for f +(q2).

2. Omnès Dispersion Relations

Mandelstam’s hypothesis of maximum analyticity and Watson’s Theorem relate the phase of
the form factor f + in B → π decay to the phase shift in the elastic Bπ → Bπ scattering amplitude
in the JP = 1− and isospin-1/2 channel. We have

f +(s+ iε)

f +(s− iε)
=

T (s+ iε)

T (s− iε)
= e2iδ (s), s > sth

where sth = (mB +mπ)2 and T (s) is the scattering amplitude,

T (s) =
8πis

λ 1/2(s)
(e2iδ (s) −1).

With a single subtraction, the Omnès dispersion relation gives

f +(q2) = f +(0)exp
[

q2

π

∫ ∞

sth

δ (s)ds
s(s−q2)

]

.

There is a corresponding result for f 0.
In [7] δ (s) was found from T (s) in an on-shell Bethe-Salpeter scheme with kernel determined

by tree-level heavy-meson ChPT (HMChPT), allowing a fit to lattice data for f + and f 0 with
free parameters f +(0) = f 0(0) and gBB∗π (the coupling of B, B∗ and π mesons, which fixes the
lowest order HMChPT interaction term). The drawback here was the need to know δ (s) far above
threshold.

To suppress the dependence on δ (s) at large s, we make additional subtractions. Multiply-
subtracted Omnès relations have been used to study final state interactions in K → ππ decays [8]:
here multiple subtractions were made at a single value of s, requiring knowledge of an amplitude
and its derivatives at that point. Here we use multiple subtractions at different points [9], allowing
the input of f +(q2) information at a set of distinct q2 values. This is ideal for making use of the
results of lattice simulations. With multiple subtractions, the Omnès relation reads:

f +(q2) =
n

∏
j=0

[ f +(q2
j)]

α j(q2) × exp
{

Iδ (q2;{q2
j})

n
∏
k=0

(q2−q2
k)

}
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Iδ (q2;{q2
j}) =

1
π

∫ +∞

sth

ds
(s−q2

0) · · · (s−q2
n)

δ (s)
s−q2

with α j(q2) =
n

∏
k=0, k 6= j

q2 −q2
k

q2
j −q2

k
, α j(q2

i ) = δi j,
n

∑
k=0

αk(q
2) = 1

With many subtractions we need knowledge of δ (s) only near sth. Considering the B∗ as a bound
state with mB∗ not far from sth, we can make the approximation δ (s) ≈ π in the integral Iδ . The
Omnès factor can then be integrated exactly to give an explicit formula for f +(q2):

f +(q2) ≈
1

sth −q2

n

∏
j=0

[

f +(q2
j )(sth −q2

j)
]α j(q2)

, n � 1 (2.1)

This amounts to constructing an interpolating polynomial for ln[ f +(q2)(sth −q2)] passing through
known values at the q2

j .

3. Fitting f +(q2)

The multiply-subtracted Omnès formula in equation (2.1) was used in [9] with inputs from
a nonrelativistic constituent quark model with encouraging results. Here we will compare our
approach with that using dispersive bounds [6], by taking inputs from factorisation/SCET, lattice
QCD [10] (as quoted in [6]) and ChPT, together with an experimentally determined value for the
semileptonic branching fraction [11]:

Br(B0 → π−l+νl) = (1.39±0.12)×10−4.

We also perform a fit replacing the factorisation result with a lightcone sumrule (LCSR) value for
f +(0). The form factor inputs are listed here:

|Vub| f +(0) (7.2±1.8)×10−4 Factorisation [12]
f +(0) 0.258±0.031 LCSR [13]
f +(15.87GeV2) 0.799±0.058±0.088 Lattice QCD [10, 6]
f +(18.58GeV2) 1.128±0.086±0.124 Lattice QCD [10, 6]
f +(24.09GeV2) 3.262±0.324±0.359 Lattice QCD [10, 6]
f +(q2

max) 10.38±3.63 ChPT [6, 14]

In reference [6], the combination of the factorisation/SCET result at q2 = 0 with FNAL–MILC
lattice data at high q2 and ChPT at q2

max led to the result |Vub| = (3.54±0.47)×10−3 . In our case
we find that the ChPT point at q2

max is not really compatible with the factorisation and lattice results
and leads to a large value for |Vub|. Leaving this point out of the Omnès fit leads to a value for |Vub|

compatible with [6] and the fitted f +(q2) is compatible within errors with the ChPT result at q2
max.

This fit is shown in figure 1. Using the LCSR value for f +(0) instead of the factorisation input also
gives a compatible result for |Vub| and has f +(q2

max) compatible within errors with the ChPT point,
as shown in figure 2.

The following table shows the values of |Vub| required to fit the branching fraction from [11]
and lists the result from [6] for comparison. The fits made here assume completely correlated errors
in the input lattice points (a stronger assumption than used in [6]).
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Figure 1: Omnès dispersion relation fit using factorisation/SCET input (blue) at q2 = 0, together with lattice
QCD inputs (red) at high q2. The ChPT point (green) at q2

max is not part of the fit.
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Figure 2: Omnès dispersion relation fit using f +(0) from LCSR (blue), together with lattice QCD inputs
(red) at high q2. The ChPT point (green) at q2

max is not part of the fit.

|Vub|/10−3

Factorisation + LQCD + ChPT 5.3±1.8
Factorisation + LQCD 4.0±0.7
LCSR + LQCD 3.7±0.5
AGRS [6] (Factorisation + LQCD + ChPT) 3.5±0.5

4. Conclusion

The multiply-subtracted Omnès relation gives a model-independent method for extending
f +(q2) over the whole range of q2 using measured values at a given set of q2. With the approxi-
mation made here, an explicit formula results. This is ideal for combining lattice results with other
known information at specific values of q2. Both the Omnès method and techniques using disper-
sive bounds [6] show the importance of having knowledge at widely spaced q2. The combination
of an input at q2 = 0 with lattice results is especially constraining.

Watson’s theorem relates the phases of the form factor and the elastic scattering amplitude
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only below the inelastic threshold, so inelastic scattering effects are not taken into account here.
Moreover, with many subtractions the input values at the subtraction points and the phase should
satisfy constraints in order to avoid bad asymptotic behaviour of the form factor [15]: this too is
also not accounted for in the simple formula presented here.

Acknowledgement: We thank Iain Stewart for discussing the results in [6] prior to publication
and Irinel Caprini for commenting on the constraints to be applied to the over-subtracted Omnès
representation.
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